
DTIC
SELECTE

..... A 0 5 1990

Air University

In Partial Fulfillment of the

Requirements for the Degree of

.Master of Science iii Computer Engineering

Arpmved L:: :'!zL-c release 1

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

90 04 405 131



AFIT/GCE/ENG/oM<2

A CONIP.-RISOINOF A RELATIONAL

AND NESTE D-RELATIO NAL IDEFQ

DATA MODEL

THESIS

Presentfed to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

i Partiail Fulfillment of the

Requirements for the Degree of

Mal~ster oh' Science ini Computer Engineering

Gerald Roger Morris, B.S.E.E.

(",1)ta Iin. U S AF

MR!.1990

*\iirwr 1-1111 (llcr~a~ istrib1utionl unlimi11tred



A F IT/G CE! EN G /90 Nl -2/

A COIMPARISON OF A RELATIONAL
AND NESTED-RELATIONAL IDEFo

DATA MODEL

THESIS

Gerald Roger Morris
Captain. USAF

.\P~k. .1 *\f..p11T . ls 'GCEENG/ 0 unimte



Preface

The purpose of this thesis is to develop an abstract data model of a computer aided soft-

w:)i, engineering (CASE) methodology, and to compare the query complexity, database size, and

"1... of query execution of a relational database management system (DBMS) implementation of

h iethodology with a nested-relational DBMS implementation. The United States Air Force

Integrated Computer Aided Manufacturing (ICAM) program defines a subset of Ross's Structured

.\nalysis (SA) language called ICAM Definition Method Zero (IDEFO); it is precisely this IDEF0

',ullset that is considered (30)(25). Ingres Corporation's relational DBMS, Ingres. is the implemen-

t;lt nn media for the relational version; the University of Wisconsin's Extensible Object-oriented

libtahase. Exodus. is the implementation media for the nested-relational version (29)(4).

The comparison is undertaken to demonstrate potential advantages of a nested-relational

DBMS for this application. Additionally, the development of an abstract data model for IDEFo is

,tirectlv related to on-going AFIT research efforts associated with the Strategic Defense Initiative

Organization (SDIO), which has adopted the IDEF0 analysis language.

I extend my gratitude to several people who supported me during this effort. I thank my

rl,,7is advisor. Major Mark Roth for his patience and guidance in the area of database theory and

application. I thank the other two members of my committee. Dr. Thomas Hartruni, who strongly

influenced the development of the abstract data model, and Dr. Gary Lamont, who taught me

*:,rly on to assume nothing and to return to first principles when lost. I thank Capt Neal Smith

: (1'apt Ken Austin. who helped me develop the abstract data model. I thank Capt Mike Mankus

who developed the nested-relational DBMS and Capt Jim Kirkpatrick for his insight in helping me

d'velop the nested-relational version. I especially thank Penny for her moral support during theseE

;,!'.t niont hs.

Gerald Roger Morris ... .Cedes

\ - C T EI o r

iiW



Table of Contents

Page

Preface . .. .. .. . .. . . .. . .. . .. . .. . .. . .. . .. . .. . .. . . .. . ....... i

T able of C ontents . . .. . I . . . .. . .. . . .. . .. . . .. . .. . . .. I .. . . .. . . i

List of Figures . ............ . . . .. .... . . . .. .. .. .. .. .. .. . viii

List of Tables. .. .. . .. . .... . .. . . .. . .. . .. . .. . .. . .. . .. . ...... x

A bhst ra ct . . . .. . . .. . . .. . . .. . .. . .. . . .. . .. . . .. . . .. . . . .. . .. x

1. INTRODUCTION. .. .. .. . .. . .. . .. . .. . .. . .. . . .. . .. . .. ...

General Issues.. .. .. .. .. . ..................... I

B ackground . . . . . . . .. . . .. . .. . . .. . . . .2

Overview of CASE Development . . .. ... ... ...... 2

Overview of Database Development. .. .. .. .. .. . .. . .....

Problem Statement .. .. .. .. . .. . . .. . .. . .. . .. . .. . .. . .... 10

Plan of Attack .. .. .. .. . .. . .. . .. . .. . .. . .. . .. . .. . . ..... 11

Development of an Abstract Data Model .................. 11

Mapping of Abstract Data Model .. .. .. .. .. . .... . .. . . . 13

Example Database Instance. .. .. .. .. . .. . .. . .. . .. . ...... 13

Development of Queries. .. .. .. .. .. . .. . .. . .. . .. . ..... 13

Comparison. .. .. .. .. . .. . .. . .. . .. . .. . .. . .. . . ..... 14

Scope and Limitations .. .. .. . .. . .. . .. . .. . .. . .. . .... .... 15

S c o p e .. .. . . .. . .. . .. . . .. . .. . . . .. . .. . . .. . .. . . 15

[. Imitat ions. 1.5

Sequence of Presentation ..... ..... . . . . 16

iii



Page

IL LITERATURE REVIEW .. 1 7

Introd uct ion .. . . . . . . . . . . . . 17

O verview of IDEFo .. . .. . .. . .. . . .. . . .. . .. . . . .. . . 17

AFIT and [DEFo . 21

Overview of Exodus . . ... .. . .. . . .. .. . . . . . . .. .. . . . . 22

CASE Tools and DBMNS .23

An Analysis Scenario - The Need for a DBMNS ..... 24

Mapping Difficulties. .. .. .. .. ... ... ..... ... ...... 27

Commercial Databases for CASE Tools ..... .......... .. 30

Integration of CASE Tools. .. .. ... ... ............. 31

Summary .. .. .. .. ... ... ... ... ....... .. ..... ...... 35

II.METHODOLOGY. .. .. .. ... ... ... ... ... ... ... .... ... .... 36

Introduction . . . ...... . .. .. .. .. .. .. .. . . .. . .:36

Extended E-R Notation .. .. .. ... ..... .... ......... 36

IDEFO Abstract Data Model .......... ....... .... .37

Essential Data Model . 39

Drawing Data Model. .. .. .. .. ... ... ... ... ... ....... H

IDEFo Relational Database. .. .. ... ... ............ 49

Design Trade Offs .. .. .. .. .. ... ....... ..... ... 49

Relational Design .. .. .. .. .. ... ... .... ... ........ 50

Example Relational Database Instance .. .. .. ...........

Relational Implementation............ . . ... . ..... .. .. .. 55

SQL Queries .. .. .. .. .. ... ... ... ... ... ... ... ..... 58

IDEFO Nested Relational Database .. .. .. ... ... ... ... ... ..... 61

Design Trade-Offs...... . . .6(1

Nested- Relational Design .. .. .. .. .... .6

Example Nested- Relat ional Database Instance. .. 71

iv



Page

Nested- Relational Implementation ................... . 72

SQ L/N F Q ueries . . . .. . . . . .. .. . . .. . . .. .. . . .. 72

S um m ary . . .. .. . . . .. . .. . . .. . .. . . .. . .. . . .. . .. . . .. 741

1 V. F IND I NGS.. ... .. .. .. .. .. .. .. .. .. .. . . ................. 7

Introduction.. . .. .. .. .. .. .. .. .. .. ............... . 7

Query Complexity... .. .. .. .. .. .. .. . ................. 7

A Definition of Complexity......... . . .. -

Comparison of SQL versus SQL/NF . .... ...... 7

Size of Database .. ...... ... .... . 78

Relational Logical Size. ....... ..... . ..... 78

Nested- Relational Logical Size. .. .. .. . .. . .. . .. . . .. . ..... 79

Speed of Query Execution. .. .. .. . .. . .. . . .. . .. . .. ....... 83

Disk Resident Project Data .8 3

Memory Resident Project Data . .................... . . 84

S umnm ary . .. . . .. . . .. . .. . . .. . . .. .. . . .. . . .. . . .. . . 91

V CONCLUSIONS AND RECOMMENDATIONS .................... 92

Introduction .. . . .. . .. . . .. . .. . . .. . . . .. . .. . . .. . . . 92

Sumnm ary . . .. . . .. . .. . . .. . .. . . .. . .. . . .. . . .. . . .92

C o nclusions . . . . .. . .. . . .. . . . .. . . .. . . .. . .. . .. . . 9

Recommendations .9 . .......... (5

A\ppendix A. Some CASE Tools and Vendors . ........ II.. .... 97

.Appendix B. IDEFo Language Features .......................... 100

.\ppeiidix C. SAtool Products .. .. . .. . .. .. . .. . . . .. ..... ..... 101

Typical SAtool IDEF0  Drawing Outputs .. ..... ......... 101

Data Dictionary Outputs ..... ... .................... 104

V



Page

ACTIVITY Data Dictionary . ... ......... .. 104

DATA ELEMENT Data Dictionary. ... . 105

Appendix D. Analysis Phase Data Base ...... .......................... 106

Appendix E. Typical Data Manager Session ............................. 109

.\ppondix F. Example IDEFo Relational Database Instance ............. . 111

A ppendix G . SQ L Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 117

C reate T ables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Load Database ........... 120

E rase D atabase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1

Show Database ....... ................................... 122

Extract Drawing Data ........ ............................... 123

A-0 Drawing Data ..................................... 123

A D D raw ing D ata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Extract Essential D ata . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 137

Activity Data Dictionary . . . . . . . . . . . . . . . . . . . . . . . .. . 137

Data Element Data Dictionary .............................. 139

.Appendix H. Example IDEFo Nested-Relational Database Instance .............. 142

.\l-,ponlix I. SQL/NF Scripts ........ ................................ 158

Create Tables ... .............................. . . . . . . 1.58

Load D atabase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Erase D atabase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Show D atabase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Extract Drawing Data . . . . . . . . . . . . . . . . . . . . .. 161

Extract Essential D ata . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

Activity Data Dictionary ................................ 165

vi



Page

Data Element Data Dictionary ............... ....... 166

A\ppendix J. Ada Package for Drawing Data Structures ................ 167

13iIdiograpliv .. .. .... .... .... .... .... ... .... .... ......... 170

'i t i . . .. . . .. . . . . . . . . . . . .. . . .. . 1 7 2



List of Figurts

Ii ur, Page

1. Typical Hierarchical Database . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2. Typical Ntwork D atabase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3. Typical Relational Database .................. 7

I. Typical Entity-Relationship Diagram ......................... 9

", IDEF 0  Abstract Data M odel . ........ ........... [2

Structured Decom position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

7 .\-Uj Diagram 19

. O D iagram .. ...... . . . . . . . . . . . . . . . . . . . . 20

9. S A tool P roducts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

10. Highly Simplified E-R Diagram of SAtool Data Model ................. 29

11. Common Database System Structure ....... .......................... 34

12. Modified Entity-Relationship Notation ....... ......................... :37

13 IDEF 0 Abstract Data Model: Essential Data and Drawing Data ........... 38

1. L DEF- ACTIVITY Essential Data Model ................ 40

1.5. IDEFo DATA ELEMENT Essential Data Model ........... ........ 11

16. IDEF 0  ACTIVITY Drawing Data Model ........................ 45

17. IDEFo DATA ELEMENT Drawing Data Model .. ...... 46

I' .\-0 Diag~amn (partial drawing 1) .3... .............. 59

N,. A-0 Diagram (partial drawing 2) 60

2'0 .\tol Products 101

21. Typical A -0 D iagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

22. Typical AO Diagram ......................................... ... 103

23. A-0 Diagram (partial drawing 3) ....... ............................. 124

21. A-0 Diagram (partial drawing 4) ....... ............................. 126

25 A\0 Diagram (partial drawing 1) ............. ...... . .. . 128

viii



Figure P age

26. AO Diagram (partial drawing 2) ... ...... . ..... ......... . 130

27. AO Diagram (partial drawing 3) ....... .......... . .. 131

28. AO Diagram (partial drawing 4) ............... .. ... . 135

ix



List of Tables

Table Page

1. Description of Components in the Essential Data Model ....... -12

2 Desciiptioii of 'Components in the Drawing D;ia Nlel -17

;3 Relational Design ..... 5.1..7

i Mapping of E-R Essential Data to Relational Design .6......... .. . 56

5, Mapping of E-R Drawing Data to Relational Design .................. 57

6. Nested- Relational Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 64

7. Comparison of Query Script Complexity . ................ I... . . 77

S Comparison of DDL/DM L Script Complexities ............ ....... . 78

) Sim ple Relational Exam ple . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

10. Sim ple Nested-Relational Exam ple ............ ................ 79

It. Logical Size of Relational Instance ...... ....... . . . . ... . 81

12, Logical Size of Nested-Relational Instance ...................... 82

13 Relative Query Speeds: Number of Disk Accesses ....... 84

II IDEF0 Language Features ......... 100



Vl 1(EL(3 f)-2

Abstract

T ills thlesis develops an ibstract data model of a particular computer aided software engineer-

II AS-, me1,thodologyv, and compares the query complexity, database size, and speed of query,

X,,,itH ot af, relational1 datAba,,e mianagemnent system (DBMS) implementation of the methodology

witli at nested-relational DBMIS implementation of the same CASE methodology. In particular, the

o t~i oiisiuers the [_ited States Air Force Integrated Computer Aided Manufacturing (ICAMI)

rogra"IM ls subset otf Ross's Structured Analysis (SA) language called ICAMI Definition Method Zero

I1DELC InCe orporation's relational DBMIS. Ingres. is the implementation miedia for the rela-

ma vr-~~nl,-I ivri of \iosisextensible database, Exodus, is the implementationi

I a 1 o 0 lie 1*e11 dI." IatioI a I verIs ionl.

ilet hoIs provid les background intformat ion on the development of CASE methodologies and

II, Jee1ei" i"l )I dat a base. man agemetit systems. Additionally. it. providles an overview of the

I IWII, analysis laiiigae. ;mddtrhe Exodus extens:ible DBMS. /

Ilnclu led IIO the sis Is an abst ract data model of the IDEFo language. The model partitions

II)1 *.,1 liito all ' (naI la amodel aiid a drawing data model. This partitioned representation

tI it ate1S oaIl au tt i i researrch relative to syntax checking, generation of anl executable

~atwi'spec-ification,. and automnatic layout of SA diagrams. Since IDEF0 is the analysis method-

lay ~elr I)\'b the St rategic Defense Initiative Organization, the abstract data model alone is of

TlW. ahstt.-i dat nodel 1 i napped Into a relational representation and implemented wvithin

II' I'"relt ol r'prcs'eitat ion Is tnap)ped Into a nested-relational representation and imlple-

itIII,-]' withinl FxodwrI. hew two rlitp'ernoitations are, compared to see if there are any advantage,

I'- 2,;111- kv ;1ru a1 uDt'-Rhi'a I IS for tis type of application (CASIE tool data). The

a I ':1.1 ' p ii III pi. 'a i lxit < o f tw di' atabiIase . ait sp.'i' ofquery O'xecut 101i



A COMPARISON OF A RELATIONAL

AND NESTED-RELATIONAL IDEFo

DATA MODEL

I. INTRODUCTION

(;eeral Issues

The application of the modern digital computer was the stepping-stone from which soft-

ware engineering and database theory developed. This thesis investigation involves both software

,i g ileering and database management systems (DBMS). It compares a relational DBMS imple-

nentation of a software engineering methodology with a nested-relational DBNIS implementation

,J the same methodology. The United States Air Force Integrated Computer Aided Manufactur-

ing ([CAM) program defines a subset of Ross's Structured Analysis (SA) language called ICAM

Definition Method Zero (IDEFO); it is this language which is considered in this research (25) (30).

Ihe relational version of the IDEF 0 language is implemented within Ingres Corporation's rela-

tional DBMS, Ingres (29). The nested-relational version is implemented within the University of

\'i~ronsin's Extensible Object-oriented Database, Exodus (4).

The comparison is undertaken to determine potential advantages relative to query complexity,

.iz, of the database, and speed of query execution of a nestc,-relational DBMS for the application

,fcomputer aided software engineering (CASE) tools. Additionally, the development of an abstract

,Ira model for the IDEF 0 language is directly related to on-going AFIT research efforts associated

with the Strategic Defense Initiative Organization (SDIO), which has adopted the IDEFo analysis

imgil ge.



Background

Orerview of CASE Derelopinent. Software engineering is a relatively new field which has

uniorgone dramatic transformation in the past 40 years. In the early years. computer programming

:ind ._oftware development in general was pretty much a --black art" which depended upon the skill

Qf a few --high pri-sts.'" There were often cost and schedule overruns. As Betty Forman said. -If

carpenters built buildings the way programmers write programs, the first termite would destroy

rivilization" (13:3). The community recognized this problem and began to address it. A work.-iop

in 198. in Garmisch. West Germany, and a subsequent, one in Rome, Italy in 1969 looked at the

-rowing technical and managerial problems associated with the development and maintenance of

computer software. According to Fairley, it was these workshops which coined the phrase, software

,naIuneering (12:4). Fairley proposes the following definition for software engineering:

Software engineering is the technological and managerial discipline concerned with sys-
temnatic production and maintenance of software products that are developed and mod-
ified on time and within cost estimates. (12:4)

There are literally dozens of software engineering approaches covering virtually all phases

of software development. Some the theoretical work concentrated on the requirements analysis

phase. Larry Constantine invented data flow diagrams and perhaps structured programming: one

of the first books on structured design was written by Constantine and Edward Yourdon (41). Tom

DeMarco wrote the classic book on the principles of structured analysis and showed the use of data

iow diagramming as part of a software analysis methodology (11). Paul Ward and Steve Mellor

did important work in the area of real-time structured analysis; Ward's 1985 paper describes the

exreteSions made to DeMarco's data flow diagram, which allow it to represent timing and control

information (40). In 1987, Paul Ward, Hughes Aircraft Company's Randall Jensen, Honeywell's

William Bruiyn, and Boeing's Dinesh Keskar, developed the Extended System Modeling Language

2



(ESML),' a method that combines some features of both the Hiatley and Ward-Mellor methods

(IS).

Rogr Pressman givcs an overview of some other approaches (27). For example, Jackson

System Development (JSD) combines a natural language during the initial phases with structure

Charts and structured text added during the later phases. Another methodology is the Warnier-

Orr Data Structured Systems Development (DSDD). which considers data hierarchy, information

flow, and functional characteristics. There are several methodologies based upon some type of

requirements language, e.g,, Software Requirements Engineering Methodology (SREM), and Prob-

lem Statement Language/Problem Statement Analyzer (PSL/PSA). Another increasingly popular

approach is the so-called object-oriented methodology, which attempts to link real-world objects

and their associated operations.

Of particular interest, is Ross's Structured Analysis (30). This graphical analysis language is

the basis for IDEFO, the language modeled in this investigation (25). Like the traditional data flow

diagram, SA is a hierarchical decomposition. It allows data (nouns) and activities (verbs) to be

modeled via arrows, boxes, and other graphical and textual devices. Additional information about

SA and IDEF 0 is given in Chapter 11 of this thesis.

vie early theoretical work naturally led to the development of computer based tools to assist

th software developers. The term computer aided software engineering (CASE) is used to describe

th-se computer based tools. First-generation CASE tools were developed using a theoretical and

r,'lntological base that changed even as the tools were being written. To a large extent this is still

True. Many of today's CASE products are constantly being revised to accommodate new theories,

iiwt hodologies, and programming languages. CASE has become a grab bag for a variety of software

prodIucts and services: some are quite valuable, other are just "pieces of methodology out chasing

markets" (17:52). A list of some commercially available CASE tools is included in Appendix A.

1 While assigned to the Government Plant Representative Office at Hughes, I had the opportunity to review Dr.
Jensen's draft paper on the ESNIL model.

3



A software development organization needs a suite of CASE tools rather than one --super-

tool." In fact any one tool that tried to combine all features would be rather unwieldy. Hawley

expresses this sentiment rather succinctly:

To combine all the functions and features known to CASE tools and designate that list
as the standard is a disservice to users and vendors. It makes the ideal CASE product
resemble an elephant; enormous, clumsy, frightened, and expensive. (17:53)

Since each of the tools within a CASE environment must be able to use the data generated

by the other tools, it is important to develop a formal or semi-formal model for each methodology

bing automated and create an environment in which each of these models can exchange data,

perhaps through some type of DBMS.

Overruew of Database Development. Database system theory is even more fledgling than

computers and software in general. In the thirty years since 1960, it has experienced dramatic

changes. Businesses took advantage of the power and speed of computers; the complexity and size

of data processing applications began to grow. These applications were based on a file-processing

system wherein the various pieces of information were stored in separate files. Korth and Silber-

s,:hatz point out that this file-based approach has major disadvantages such as data redundancy,

lilficulty in accessing data, concurrency problems due to multiple users, and security problems

(20:2). Companies such as IBM, North American Aviation (now Rockwell International), and

General Electric had extensive database requirements that were rapidly exceeding the capability

()f the existing programmer community. It was becoming difficult. for these large organizations to

,,iil)lete existing projects, let alone take on new projects. Increasing amounts of time were being

-pent on special purpose code to accommodate multiple users, provide adequate security, ensure

I It, integrity of data, and so forth. Each new application basically reinvented the wheel in terms of

alata structures, access methods, and so forth. As a consequence of these issues, database manage-

Inent systems (DBMS) were developed. As far as traditional business applications are concerned,

4



latabase system theory and practice appears to have matured and stabilized. "The fundamental

latabase system concepts are now well defined and well understood" (20:xiii).

The first DBMS systems were based upon the hierarchical model. In this logical approach,

records are contained in multiple levels that graphically form a tree structure with the root at the

top and the branches formed below. There is a distinct superior-subordinate relationship. Figure 1

is an example of a hierarchical database structure based upon Date's supplier, parts, and shipments

,latabase (10:64). The data base is a forest of trees, each of which has a root node record. Below

the root record are subordinate record nodes, each of which, in turn. owns one or more other

nodes (perhaps none). Each node in the tree, except the root, has a single owner. Each of the

records in the tree contains a collection of fields. Each field contains a single value. Because of the

structure, data must often be replicated in several different locations within a hierarchical database.

According to Korth and Silberschatz, this presents two major drawbacks: (1) data inconsistency

nmay result when updating takes place, and (2) waste of space is unavoidable (20:144).

P1 Nut Red 12 London P2 Bolt Green 117 1Paris

S2 Jones 10 Paris 300 S3 Blake 30 Paris 200

S1 Smith 20 London 300 S2 Jones 10 Paris 400

P3 Screw IBlue 17 1Rome S mt 0 Lno 0-

S~Ij Smt 20 London 40

Figure 1. Typical Hierarchical Database

As database theory continued to develop, some of the problems inherent iu the hierarchical

5



model were circumvented by the more sophisticated network model. Like the hierarchical model,

: uetwork database consists of a collection of records connected via links. Unlike the hierarchical

model, the network model allows arbitrary graphs as opposed to trees. Thus, each node may have

everal owners and may, in turn, own any number of other records. The network model provides a

lchanism by which a field can have a set, of values. It also reduces the amount of replicated data

inherent in the hierarchical model. Figure 2, which is borrowed substantially from Date, shows a

typical network database (10:64).

Figure 2. Typical Network Database

The Database Task Group (DBTG) of the Conference on Data Systems Languages group

(CODASYL), which had set the standard for the COBOL language, studied a number of these

notwork-based DB.MS in the late 1960s. This study resulted in the first database standard specifi-

: aiion. the so-called DBTG network model.

Research on database systems continued. E. F. Codd, at the IBM Research Laboratory in

',irm Jose. introduced the relational model in his 1970 paper (7). A relational database consists of

au collection of tables (relations), each having a unique name. Each table has a number of columns

(attributes), which also have a unique name. The primary assumption of Codd's relational model is

6i



that all attributes in a relation can only have atomic values, i.e., cannot be decomposed. A relation

which only has atomic valued attributes is said to be in first normal form (1NF). Codd's paper

includes a rigorous mathematical treatment of the subject. Additionally, his model provides the

ichainisnm for separating the programs from the machine representation and organization of data

(one of the big problems associated with both the hierarchical and netwcrk database models). A set

of relations from Date's sample database, is shown in Figure 3 (10:64). According to Stonebraker.

(odd's paper --started a heated controversy in all ACM SIGFIDET (now SIGMOD) meetings from

1971 onward between two collections of people..." (36:1). The previously mentioned CODASYL

;rotip was pushing the DBTG network model (their recently defined database standard). while

(odd and academic researchers were pushing the relational model.

supplier

s* sname status city sup-part

S1 Smith 20 London s* P# qty

S2 Jones 10 Paris S1 P1 300

S3 Blake 30 Paris St P2 200

Si P3 400

part - 2 P1 300

p# pname color wgt city S2 P2 400

P 1 N - t Red 12 Lo.ndon S3 P2 200

P2 Bolt Green 17 Paris

P3 I Screw Blue 17 Rome

Figure 3. Typical Relational Database



Two influential prototype database systems based on the relational model were developed and

subsequently commercialized. These two systems. "'helped shape a fair amount of the history that

followed" (36:2). The IBM Research Laboratory at San Jose built System R, and the University

of California at Berkeley built Ingres. Ingres was eventually commercialized by several companies,

including Relational Technology (now Ingres Corporation). System R was also commercialized by

s,:veral companies including Oracle.

By and large. the relational model is the de facto database standard. However, research in

the database arena has continued, and several other models have been proposed. One such model.

which has found significant use during the design phase of databases, is Chen's entity-relationship

model (6). Basically the E-R model extends the relational model with the concepts of entities,

which are represented by rectangles; attributes, which are represented by ellipses relationships,

which are represented by diamonds; and the links between them, which are represented by lines.

An example E-R diagram based upon Date's database is shown in Figure 4. There do not seem to

he any commercial database systems that use the entity-relationship model as their underlying data

miodel. Nonetheless. the E-R model has obvious uses, in particular for logical database design2 .

In fact. many commercial relational database design tools require the database administrator to

express data using the E-R model. Stonebraker explains why the E-R model never really took

hchl. "'The relational model was dramatically and ubviously better than the older hierarchical and

ietwork models... The E-R model, on the other hand was not seen to be dramatically better than

th, relational model" (36:369).

Stonebraker gives an overview of some other database approaches, for example; the functional

model attempts to view the database as a collection of functions; the semantic data model is

;in ;ttnipt to deal with what Stonebraker calls the "semantic poverty" of the relational model

(36). Another increasingly popular approach is the so called, object-oriented approach 3 . The

'The IDEFO data mod,-[ in this thesis is derived .ip an entity-relationship analysis.
The Exodus DBMS used to implement the nested-relational [DEF0 database is an object oriented system.



supplier supplies

Figure ,4. Typical Entity-Relationship Diagram

exact meaning of object-oriented varies from person to person. Bancilhon describes the main

caIracteristics of an ohject-oriented system which should, in turn, be manifested in any DBMS that

,:o,'s to be called object-oriented. These characteristics include encapsulation, object identity,

types and classes, inheritance, overriding and late binding, and degrees of freedom (2:152).

Another important database model is the nested-relational model, which is basically an ex-

tension of Codd's relational model. The extension allows for attributes within a relation to be

multi-valued or even relation-valued, i.e., the INF assumption is relaxed. Perhaps the earliest

w,)rk in this area was done by Makinouchi, who considered set valued attributes (22). Thomas

-iid Fischer subsequently extended this concept to include relation-valued attributes (38). Roth,

Korth, and Ratory proposed extensions to the SQL query language (SQL/NF) so that it could

deal with these non-first normal form (-1NF) relations (33). The nested model, while retaining

Cdh's traditional operators, also has two new operators, nest, and unnest. These operators are

bet explained by way of the following example from Mankus:

suppose a relation r is defined on some scheme R, with attributes A, B, and C. This

may be denoted as R = (ABC). If the attributes B and C are then nested under one
attribute, thus giving us a relation-valued attribute, the scheme may now be shown as

R' = (AD), D = (BC), where B and C are nested under the D attribute of R'. By
mnnesting R' with the unnest operator, the scheme R = (ABC) is returned. (23)

9



One advantage of the nested model is that it can deal with complex, hierarchically structured

objects wherein an object is composed of lower level subobjects. A good example of this is seen in a

por onal computer. The object "computer" is made up of subobjects such as "monitor", and 'disk

drive." Each of these subobjects, in turn may be comprised of subobjects. For example, "iioni-

tor" is comprised of subobjects such as "circuit board." which. in turn, is made from "integrated

circuits," "'resistors," "capacitors," etc. Each subobject is dependent upon its parent object. If

th- parent is deleted, so are all its subobjects. Although there do not seem to be any commercial

databases based upon the nested relational model, there are prototype research systems such as

that built by Mankus (23).

The current situation is that relational database systems work quite well for business data-

processing applications. However, if you "stray from data that looks like the SUPPLIER-PARTS-

SLPPLY example popularized by Codd or the EMP-DEPT examples also in widespread use, rela-

tionial systems tend to run into trouble very quickly" (36:477). In nonbusiness application areas the

,pportiity to stray is rampant. For example; CAD applications need to store two-dimensional and

throe-dimensional objects in some type of database; considerable research has been expended on

tryng to integrate database management systems with artificial intelligence systems; Rubenst'in

describes the design of a database system for musical information (34). It is almost certain that

next-generation CASE tools will put software specifications, definition of forms, reports, graphs.

ad even source code in a database. In all these areas, current relational systems tend to work

poorly; user queries are difficult to construct and they execute slowly. As a result, developers of

those kinds of applications generally ignore relational technology. Some other database approach

might prove useful. Particularly in a data intensive area such as CASE tools.

Prfbe, Stateenit

The purpose of this thesis investigation is to analyze the data requirements of the IDEF0

10



structured analysis language; develop an abstract data model of the language: implement this data

model within an lngres-based relational DBMS; implement the model within an Exodus-based

nested-relational DBMS; compare the two implementations in terms of query complexity, size of

the database, and speed of query execution; and, based upon the comparison, determine if the

nested-relational implementation of the model is more appropriate for the IDEF 0 application.

Plan of .4tack

The plan of attack is to analyze the data requirements of the [DEF13 language and develop

a abstract data model. After the data model is complete, it is mapped to a set of relations and

implemented in the Ingres relational DBMS. An example database instance, and a series of queries

is developed to extract data from the relational implementation. The relational model is then

mapped into a nested-relational representation and implemented within the Exodus-based nested-

relational DBMS. An example database instance containing the same information as the relational

instance is developed, as well as a series of queries to extract data from the nested-relational version.

Finally. comparisons between the two implementations.are generated. These comparisons include

complexity of queries, speed of query execution, and size of the database.

D relopment of an Abstract Data Model. In order to facilitate development of the relational

and nested-relational DBMS implementation of the IDEF 0 language, an abstract data model of the

lan uage is constructed. This abstract data model consists of two parts, the essential data model.

and1 the drawing data model. The former captures only the essence of the analysis language in terms

4 activities and data elements, whereas the latter captures only those portions of IDEF 0 which are

strirtly graphical constructs. This approach allows future tools to extract analysis data without

having to deal with the fact that the analysis language was IDEF 0 . The concept is illustrated in

Figure 5.

11



IDEFo
Essential

Data
Model

IDEFo
Abstract

Data
Model

IDEFo
Drawing

Data
Model

Figure 5. IDEF0 Abstract Data Model

Essential Data Model. The IDEF0 essential data model captures those portions of the

k;miguage which represent the semantics (relative to a human interpretation) of a particular analysis.

This includes, for example, activities and their children, as well as data elements. It does not

include, for example. the location of the boxes or arrows which graphically represent the activities

and data elements. As mentioned earlier, this approach allows future tools to extract analysis

information without having to deal with the IDEF0 graphical representation explicitly, i.e., without

having to --walk through" the drawing.

The entity-relationship model is used to analyze the essential data model since it allows for

.,',ty mapping into a relational design. Furthermore, one of the advantages of the entity-relationship

approach, as explained earlier, is that it retains many of the semantics of the actual data being

Drawing Data Model. The drawing data model represents the actual graphical con-

-t ructs, e.g., boxes, arrows, etc.. used to represent the particular IDEF0 analysis. This data is used

to Iraw an IDEF 0 model. It contains such information as the location of boxes, the line segments

12



which graphically represent a given data element, etc. For the same reasons as before, an E-R

atialvsis is used to derive the model.

.1Mapping of Abstract Data Model. The mapping of an E-R model into the corresponding

relations is relatively straight forward. An example of a mapping approach is given in Chapter

2 of Korth and Silberschatz (20:21). After the mapping into relations is accomplished and tuned

via stepwise refinement, it is a simple task to implement the design within the Ingres DBMS. The

mapping into a nested-relational model is a different matter. There are paradigms for mapping

a scheme into a nested-relational design given a universal relation, its functional dependencies.

and multivalued dependencies (31). Unfortunately, there is no easy way to determine multivalued

(lependencies. particularly if the data model is developed using classical methods such as E-R.

Thus, the development of the nested-relational design is essentially still an art form which relies on

the skill of the analyst. Following the nested-relational mapping is the implementation within the

Exodus DBMS.

Example Database Instance. A two-level IDEFO analysis is used as the basis for the example

,latahase instances. This instance is loaded into the relational implementation. and the nested

relational implementation. Identical instances in each version allow for a somewhat normalized

, olparison.

Development of Queries. Typical queries to extract data from the example database are

,Ie.eloped. For the relational version, the query language is SQL. Queries to extract the identical

data from the nested-relational implementation are developed. Although the query language for

Mankus's nested-relational DBMS is based upon Colby algebra, the ultimate goal is to build a

,query language front end based upon Roth's SQL/NF (8) (33). Accordingly, the nested-relational

,lmrios are written in SQL/NF and translated into Colby algebra. The justification for writing the

13



queries in SQL/NF pertains to the query complexity comparisons between the nested-relational

version and relational version.

-(oparzsou. The comparison is a somewhat difficult issue. One area that could provide

useful data is in the area of query complexity. In order to determine which query is -more"

complex, complexity is quantified in terms of query language constructs. The queries associated

with the relational and nested-relational implementations are compared based on these complexity

1 leASL~res.

The comparison of the size of the database files seems to be rather straight forward. l'nfor-

t uately, a simple comparison of file size is not necessarily meaningful. Is the smaller size due to an

intrinsic property of the data model or is it due to the skill of the database programmer in choos-

itg a data structure'? The best that can be done with this approach is to build several database

instances and attempt to draw some qualified conclm-m --. On the other hand, if a relational exam-

1,e database instance and a nested-re!&.t i,,al example database instance (containing the identical

.lata) are compared byte by byte, on paper, then the logical size of each can be determined. This

provides a worst case comparison, since intena representations tend to compress data.

While it is rather easy to simply compare the running time of the two implementations for

various queries, the numbers are again not necessarily meaningful. Is the faster running time of

'Ale model due to an intrinsic property of the model or is it due to a more skillful programming

offort'! Does the Ingres version run faster because there a fewer people logged in? Does Exodus

run fa.ter because it is on a Sun workstation? The hest that can be done with such an approach is

to ,xamine a number of different queries and attempt to draw some qualified conclusions. A more

reasonable approach is to cunsider query speed in terms of number , - disk accesses (assuming a

disk based DBMS approach), or an order-of analysis on programs which run the embedded query

la giage queries (assuming a memory based DBMS). This latter approach obviously depends upon

14



the size of a given IDEF 0 analysis. It may not be possible to load the complete set of data for a

givpn project into memory at one time.

S.ope ,md Limnathons

Scope. The thesis effort covers four specific areas as indicated below:

1 De~elopment of an abstract data model for the IDEF 0 language.

2 Design and implementation of an Ingres-based relational database to capture the IDEF0 data.

3 Design and implementation of an Exodus-based nested-relational database to capture the

IDEFO data.

. _omparison of the two DBMS implementations to determine the benefits, if any. associated

with the use of a nested-relational DBMS for such applications.

Lonitfaftons. The development of the abstTact data model, and the nested-relational imple-

mentation of this model are the primary areas of emphasis. The ability to use the abstract data

mjodel in other on-going thesis efforts relative to IDEF0 is of primary concern. In particular.

Smith's Ada implementation of SAtool uses the data model, as does Austin's implementation of a

St ructured Analysis Tool Interface to the Strategic Defense Initiative Architecture Dataflow Mod-

eling Technique (35) (1). Another area of emphasis is Kirkpatrick's dissertation efforts relative

to nested-relational DBMS. The nested-relational IDEFO implementation depends upon Mankus's

,Iwelnpnient of a nested-relational DBMS (23). If the nested-relational DBMS is not robust enough

to implement the nested-relational design, a 'paper model" will be constricted and used as the

h.isi' for comparison. Finally, the ability to map the abstract data model into the existing AFIT

software development environment is of concern (16:8).

15



..'equence of Presentation

This thesis consists of five chapters. An overview of the IDEFO language, and the Exodus

,.IxrIIsible DBMS. as well as a literature review of DBMS as each applies to CASE tool data is pre-

*.eted in Chapter 11. The design of the IDEF 0 abstract data model and the corresponding relational

and nested-relational DBMS implementations are presented in Chapter II. Chapter IV summarizes

and compares the IDEFo implementation within a relational and nested-relational DBMS. Finally,

Chapter V presents the conclusions of this research effort and includes recommendations on further

research in this area.

16



II. LITERATURE REVIEW

Introduction

The purpose of this investigation is to develop an abstract data model of the IDEF 0 language.

implement he data model within a relational and nested-relational DBMS. and determine if there

;lPr benefits associated with the nested-relational implementation of the model.

Since the particular language being implemented is IDEF 0 , and the implementation DBMS

for the nested-relational model is Exodus, a brief overview of each is presented. The underlying

issue of course, is to determine if the mapping of CASE tool data into a DBMS is worthwhile.

Accordingly, a literature review of CASE tools and their connection with DBMS is conducted to

gai some insight into the problem.

Orerriew of IDEFo

IDEFo is a graphical language which, among other things can be used during the analysis

lhas, of software development. In order to discuss IDEF 0 , it is necessary to also discuss Structured

An;ilYsis (SA). The following paragraphs give a brief overview of both SA and IDEF0 .

In his 1976 paper, Douglas Ross introduced Structured Analysis as a generalized language,

which allows a complex idea to be represented in a hierarchical, top-down representation (30).

According to Ross. -The human mind can accommodate any amount of complexity as long as it

is presented in easy-to-grasp chunks that are structured together to make the whole" (30:17). SA

,'',,hines graphic features such as lines and boxes with standard written language to create the

SA model. Figure 6 illustrates the basic idea behind this structured decomposition. At each level.

,,, the details essential for that level are given. Further details are exposed by moving down in

h, hierarchy.

SA provides for two kinds of decomposition, an activity decomposition, and a data decompo-

,lo. In the activity decoinposition, activities (verbs) are represented by rectangular boxes, and

17



.A-0 diagram

details

AO diagram

A diagram

A32 diagram

Ba-sed on (30:18)

Figure 6. Structured Decomposition

lata (nouns) are represented by arrows flowing into and out of the boxes. In the data decomposi-

H on. boxes represent data, and arrows represent activities operating on the data in the boxes. An

xA111ple of an activity decomnposition is shown in the following two figures. Figure 7 represents

ri,~ overall context of the system being analyzed (the so called -A mninus zero" diagram). Figure 8

i'cpr-eiits the first level decomposition (the "A zero" diagram). In a real analysis, the AO diagram

would he further decomposed to whatever level was necessary to ensure an unambiguous interpre-

ration of the system requirements. Marca and McGowan have written an excellent book which

18



AUTHOR Gerald R Morris DATE 14Feb69 READER

PROJECT DM Example REV 1 0 JDATE

D] an example decompositron

NODE TITLE DM Example ]NUMIBER 1

Figure 7. A-0 Diagram

dcscribes SADT' and provides numerous workshop-style examples with which users can develop a

Ilivor for the language (24).

A full implementation of Ross's SA includes 40 different language features, and the dual de-

,composition (30:20). But the United States Air Force Program for Integrated Computer Aided

Manufacturing (ICAM), which is directed towards increasing manufacturing productivity via corn-

jlitor technology, defines a subset of Ross's Structured Analysis language called ICAM Definition

\lilhod Zt'ro. or just IDEF0 (25). This functional modeling language eliminates some of the more

, sot'ric features of Ross's language, as well as the data decomposition. Appendix B shows the

f,,at dres of the [DEFo language.

According to thle IDEF 0 manual

' Structured Analysis and Design Technique (SADT) is solrech's name (or SA.

19

A-



AUTHOR. Gerald R. Morris IDATE 14F-b9 READER I

PROJECT DNI Example IREV1 0 pATE I

rules

c1

numberrules alpharules

....I1data 
u n b er { 

ang numbermsgs

d~nm e c 
f- lback

OD TILmaaedatabe NUMBER. -

01

Tp md thamsgs
"7manage

ualpha alpha

-Idata

error codes

NODE [TITLE. manage database NU MB ER 2

Figure 8. AO Diagram

The ICAM program approach is to develop structured methods for applying computer

technology to manufacturing -nd to use those methods to better understand how best
to improve manufacturing productivity. . .. IDEFO is used to produce a function model
which is a structured representation of the functions of a manufacturing system or envi-
ronment, and of the information and objects which interrelate those functions. (25:1-1)

One of the problems with both SA and IDEFo is that there does not appear to be a formal

model of the language. In addition to "blueprint-like graphics," SA and IDEFO call for the use of

natural language (30). The use of such natural language, by definition, introduces ambiguity in

the overall IDEF0 language. In addition, certain graphical features of IDEF0 allow for ambiguous

models to be constructed. In short, IDEF0 is not a rigorous language. Although the original intent

,)f the ID EF0 language was to provide a structured approach for computerizing manufacturing pro-

ceses. it is also the language being used by the Strategic Defense Initiative Organization (SDIO) to

help understand the requirements for the so called "star wars" defense. The language also provides

20



an analysis methodology for the requirements-phase of a development effort. It is precisely this

use of IDEFo as a software requirements methodology which was the motivation for developing the

data model presented in this thesis. In addition, the model helps mitigate some of the ambiguities

inherent in IDEF 0 .

.-i FIT and JDEFo

The Air Force Institute of Technology (AFIT) Department of Electrical and Computer En-

gineering has promulgated a set of system development guidelines and standards which encourage

,ousistencv througliout all phases of hardware and software systems development (16). As part

of this standard, and in conjunction with ongoing efforts to utilize computer aided software en-

gineering (CASE) in the software engineering curriculum, the department selected IDEFO as the

language of choice for performing systems analyses. The IDEF0 language was extended to include

a data dictionary, which is AFIT's implementation of and improvement over the glossary called for

hy IDEFO. It provides not only the glossary, but also a more syntactical representation of some of

the ambiguous features of the language.

Several past efforts have produced CASE tools to assist AFIT students during software de-

velopment. In particular, Johnson developed a tool called SAtool, based upon the IDEF 0 language.

which allows the software engineer to perform an analysis of the software requirements (19). SAtool,

Which runs on a Sun workstation, is a graphics based editor which allows the analyst to draw the

diaigrams and enter portions of the data dictionary for the requirements analysis phase of software

,hvelopunent. The remaining elements of the data dictionary are automatically derived from the

diagram. The user can generate a printout of the SA diagram, a so-called faczng-page text printout,

and a hard-copy printout of the data dictionary. The analysis results can be saved in a standard

data file for uploading into a common database. The tool also saves the graphical drawing informa-

21



diagrams data dictionary

facing page text
n pstandard data file

graphics file

Figure 9. SAtool Products

tion so the user can recall the diagram for editing. Figure 9 illustrates some of the SAtool products.

;1a1d Appendix C contains some typical examples of these products.

The standard data file generated by SAtool can be uploaded into AFIT's common database.

According to Connally, the goal of the common database system is to

provide an integrated system in which a designer could sit down at a workstation,
download the necessary data from a central database, work on a portion of the design,
and when finished, upload the data back to the database. (9:2)

Oiertiew of Exodus

There are several ongoing research efforts within the database arena which are attempting to

deal with non-traditional database applications. There seem to be two general approaches: build a

;itabase that has all the capabilities needed for non-traditional applications; or build an extensible

database that can be tailored to the needs of a specific application. One such project, which falls

22



into the second category, is the 1 iversity of Wisconsin's Extensible Object-oriented Database

System (Exodus).

Basically, Exodus can be perceived of as a toolkit which allows an application-spe'ific database

to he constructed on top of an existing set of kernel facilities. Carey provides the following abstract

,bcription of Exodus:

The goal of this project is to facilitate the fast development of high-performance,
application-specific database systems. Exodus provides certain kernel facilities, includ-
ing a versatile storage manager. In addition, it provides an architectural framework
for building application-specific database systems; powerful tools to help automate the
generation of such systems, including a rule-based optimizer generator and a persis-
tent programming language; and libraries of generic software components (e.g., access
methods) that are likely to be useful for many application domains. (4:1)

The Exodus architecture provides the following tools to be used in building a database:

([ IThe Storage Manager.

(2) The E programming language and its compiler.

(3) A library of type-independent Access and Operator Methods.

(4) A rule-based Query Optimizer Generator.

(5) Tools for constructing query language front ends. (4:3)

It is Exodus's toolkit quality which makes it ideal for implementing a nested-relational DBMS

to ianage the data associated with IDEF0 . Although the Wisconsin researchers have already built

a relational DBMS. called Exrel, using the Exodus toolkit, it is not robust enough to handle

the relational implementation of IDEFo (3). The nested DBMS built by Mankus is used as the

implementation media for the nested-relational version of the IDEFO database (23).

('.ISE Tools and DBMS

A data base is invariably at the center of any kit of CASE tools. As experience with such

.lata bases accumulates, CASE vendors are finding more ways to use stored information to aid

23



in the software-development process. Because it is a repository for the specifications developed

,luring the analysis phase, the data base can act as a bridge to the design phase, making specific

information on system functions available while the design is being partitioned and detailed. As

rho_ ,torage place for the data elements and code modules that make up the final design, the data

base becomes the source for reconfiguring the software after design changes and for reuse of code. as

well as specification and design elements. The data base is also the source from which information

for documentation, project management and software testing is drawn.

.4 11 Analysis Scenario - The Need for a DBMS. The following scenario, associated with the

development of an analysis via AFIT's SAtool, demonstrates an initial input sequence, modifi-

cation sequence. and several queries. The section closes with a discussion as to why a database

management system might Le useful for storing the data.

Cr~af .g SA Diagrams. The following is a brief description of a typical SAtool session.

Using tb , graphics based SAtool editor, the analyst creates the A-0 top-level diagram shown in

Fi,.,re 7. The graphics frame includes attributes such as author, date, revision number, project

name, the title of the diagram, diagram number, and node number. For the single activity box

on the diagram, there are several attributes. Examples include activity name; the input, output,

.,ontrol. and mechanism arrows attached to the activity; a description of the activity; and an

activity number. Each of the data arrows also includes several attributes. For example, data

tan,. description. data type, range, value, and composition (data arrows nested inside another

d a arrow). Typically. the analyst does not yet know the composition of "high level" arrows; more

often than not, this is determined at the next lower level. In any case, after drawing the boxes and

arrows and entering all of the known data associated with the A-0 diagram, the analyst then saves

the drawing data in a flat file and the data dictionary data in another flat file.

A new drawing is then started which decomposes the parent activity box to expose the details

in the next level as shown in Figure 8. Here the analyst essentially starts over again. He draws

24



all the boxes, all the arrows, enters all the data dictionary items, and saves the result to another

pair of fiat files. Notice that much of the information on the AO diagram is the same as on the A-0

diagram.

Modifying an SA Diagram. Suppose the analysis documents need to be modified. For

example, a requirement to handle dates gets added. The analyst must open the file for the A-0

diagram and edit the data dictionary for the three data arrows userdata, rules, and feedback to

include udate, daterules, and datemsgs respectively, in the composition fields. He would enter

tle new revision number and date and then save the results (if the old version was required as

history, its files would have to be saved elsewhere). The analyst would then open the AO diagram,

add a new activity box manage date data, and add the new data arrows between userdata,

ritles, feedback and this new activity box. He would enter all the data dictionary requirements

for the new arrows and activity box, and save the results.

Querying an S.4 Diagram. Obviously there will be a number of predetermined -stan-

dard" queries associated with the SA diagram. For example, the queries needed to extract the

drawing data, or the queries needed to move from one level to another, or the queries needed to

determine the data content of a parent arrow. Certainly, even without the use of a DBMS, it is

possible to write these standard queries in some high-level language and make them available to the

tool user via the standard tool interface mechanism. However, ad hoc queries are another matter.

Let's look at several queries that might be typical for an SA analysis (these queries are based on

my own personal experience with software analyses in general, and with SA in particular). Suppose

th'. analvst is interested in determining all of the activity boxes which are touched by the userdata

data arrow. This is currently done by painstakingly examining each diagram and manually tracing

the arrows. There is no effective way of accomplishing this via the current automated tool. Sup-

pose the analyst is interested in all the primitive (lowest level) activities within a certain activity

box. Once again this must be done by manually looking at each of the subordinate diagrams and

25



extracting the activity boxes which have no "children." Suppose a certain analyst on the team gets

promoted. His replacement, Mary, needs to know which diagrams now belong to her. This would

ctrrently be done by manually examining each diagram to determine the author. Finally, suppose

the project manager needs to determine which diagrams were modified after a certain date. Once

,gain this would be done by manually examining each and every diagram.

Why a DBMS Would be Useful. The previous sections consider a typical analysis sce-

nario in terms of creating, modifying, and querying the analysis products. Some of the problems

a.sociated with the current, non-DBMS implementation of SAtool are illustrated. This section

1lgg e.ts that a DBMS might be useful in providing a solution to each of the problems.

Consider the initial creation of the AO diagram. Clearly, much of the information needed

on the diagram is already available from the previously generated A-0 diagram. For example; the

project name, title. etc., should be propagated down to subordinate levels. Unfortunately, the

current implementation of SAtool requires the user to enter all of this information at each level. As

a rsult. there is a significant amount of redundant data stored for each level of the diagram. Say

tha t an analysis consists of N levels, and at each level (except the A-0), there are k boxes. Assume

that the only redundant data is the project name. It gets stored once at the A-0 level, k° times at

level 0 (AO), k2 times at the level I (nodes Al1 through Ak), k2 times at level 2 (nodes All through

A.kk). k3 times at level 3 (nodes A l1 through Akkk), ... , k N times at level N. Adding this all up

we see that the same piece of data has been redundantly stored Rv times, where

V -- k.v+l

RN =1+k'= 1+ -k
t=0

The formula above is conservative; SAtool actually saves project name for each box and for

each data arrow! The simple 2-level analysis depicted in the two SAtool figures results in a flat data

26



file which contains the project name -DM Example" 14 times. If this information were available

in a database, it could simply be referenced by the subordinate level diagram.

Aside from the redundant storage issue, there is the high potential for incorrect data entry.

All of the input is done manually at each level; no consistency checking is done. It is possible

to create diagrams that absolutely do not match at the various levels. A DBMS. which typicall

includes consistency validation routines, could help mitigate this problem.

The modification scenario presented above could be significantly simplified by the use of an

;Ippropriate DBMS. When the analyst decomposes a pipe data element into its constituent data

ellients. their names. et al, would be automatically propagated upward into the higher level

diagrams. As already mentioned, it is currently possible to decompose an arrow (data item) at a

lower level and then not update it's "parent" arrow. The fact is that an IDEF0 analysis, being

a top-down approach, gradually exposes more detail as one moves down the hierarchy. Generally

speaking, the analyst does not even know the composition of a given 'high level" data arrow until

the lower level diagrams are drawn. Accordingly, the analysis typically goes something like this:

draw the high level diagram and save it. Draw the lower level diagrams and save them. Reopen

the high level diagram and add the correct composition to arrows. Clearly this redundant effort

might be eliminated by the use of a DBMS.

The queries discussed above could also benefit from a DBMS. The drawing tool could use an

,embedded version of the DBMS query language to extract and draw the diagrams. The user could

,-mploy the query language of the database manager to extract information. Stored queries could

ho° maintained for those queries which occur frequently; ad hoc queries could be constructed on the

fly. Finally, the use of a DBMS would automatically provide for crash recovery and concurrency

control for multiuser applications.

.lfappng Difficultzes. It is certainly not yet clear that the nested-relational DBMS is the

answer to all the problems associated with mapping CASE tool data into a DBMS. At the risk of

27



appearing prejudiced against relational databases, I would like to illustrate some of the problems

that arise when using a relational DBMS in a CASE tool data environment. For example, a design

object may be physically too large to fit in a standard record, and if a single design object is

represented by many records, the user must still be able to manipulate it as if it were a single unit.

In addition, different users may want different views of the same object. One user might want to

see a high-level data-flow view of the "'Guide-Torpedo" system, whereas another user might want

to see only the processes associated with "Guide-Torpedo," or perhaps only the main routine from

the design phase data dictionary.

One of the biggest problems associated with mapping CASE data into a relational model is

that the record oriented relational model forces the designer to oversimplify data structures to the

extent that information about the database is lost. Logical entities must be broken up into many

i!-ations in order to "'force fit" them into the relational model. This typically results in a large

number of relations and tuples. In a design phase database, for example, the code of a module

body typically involves perhaps 100 lines. Assume that each line is restricted to an 80-column

format. Clearly we would need to map this into 100 tuples each having (among other fields) an 80

character string field. In order to retrieve the single logical entity called "code body," we would

have to retrieve 100 tuples from the database and then (somehow) force these lines into a single

text file. Figure 10 is an admittedly simplified E-R diagram of the SAtool data model. There are

,essentially two entities; activity boxes, and data arrows. Nonetheless, when we map this into a

relational model, we end up with some 23 different relations as shown in Appendix D. A direct

Consequence of this mapping is that query processing is slowed down by virtue of the multiple joins

Iqmied,

.\nother problem associated with mapping CASE data into a relational model is the length

(time wise) of transactions. In a typical business a.jplication, a transaction only lasts a few mo-

nients. The user grabs the applicable tuples, immediately makes changes to them and writes them

28



S activity cnan

Figure 10. Highly Simplified E-R Diagram of SAtool Data Model

hack to the database. In CASE tools however, the user checks out the appropriate diagram (tu-

pIes.'), and then may spend hours if not days making changes before checking in the results. In a

ty pical relational DBMS, this might seriously impact the crash recovery capability of the system.

Yet another problem when mapping CASE data into a relational model is that of keeping

i-visions (history). A typical software development effort requires the developer to keep all revisions

in the database. Thus, when we "update" a logical entity, we might be adding a new feature to the

,tirity. or we may be simply changing an existing feature, i.e., the meaning of the word "update"

is now ambiguous. A similar problem exists with 'delete;" say a certain revision, y, requires us to

l"ete module. x. Clearly we want to keep the entities associated with module x in the database

for revisions earlier than y, and -delete" them for revisions y and beyond.

As a result of these mapping problems (and perhaps others), existing database technology

29



forces many CASE vendors to defer to the file-based structures that early business applications

ii ,l. The current generation of CASE tools, for the most part, are special-purpose systems in

which a collection of files represent design objects. The primary drawbacks of this approach are

the lack of data independence, the complexity of database administration, the high degree to which

the data is tied to the machine representation and internal data structures, and the lack of fully

goiral concurrency and recovery systems. These drawbacks are, in many respects, identical to

those encountered by data-processing applications before database management systems came into

wifle-pread use.

Conimercial Databases for CASE Tools. There are a few vendors who have developed databases

tailored specifically towards the needs of CASE tools. Three such systems are briefly described in

the following paragraphs.

CDD/Pus. The VAX Common Data Dictionary, CDD/Plus, developed by Digital

Equipment Corporation (Marlboro, MA), is a distributed data dictionary which allows users access

to software data definitions either centrally or locally across a network. It spans the entire software

life cycle-from applications development and code generation, through production and systems

implementation. It allows data extraction to simplify software documentation efforts, and allows

ad hoc analysis and reporting (37).

The Developer. The Developer, available from Asyst Technologies. Montreal, Canada.

lets the user construct simple diagrams consisting of rectangles, interconnecting lines and arrows,

;nl text. In addition to storing items such as data elements and data-flow descriptions, a data base

cot,.,ns attribute information for each item, as well as associations between stored items. The user

'1n ,tlcite not only which items to store, but also what attributes the items will have and what

th, rules will be for associations between the items (17).

30



i'sDesigner. vsDesigner, from Visual Software, Santa Clara, CA. is a highly flexible

database oriented specifically towards the CASE market. It is object-oriented and lets users define

the objects and object attributes. Associations between objects can also be defined in the form

of rules. Each object has multiple user-defined representations: graphics symbols. object descrip-

tions. rules for using it with other objects, and attributes. During analysis, users can install links

in ;pecification objects that will later be connected to design objects. Source code can also be

a.sSociated with each object, along with attributes such as execution times. With the help of a data

base query language called vsSQL, users can make execution-time analysis of real-time software by

walking through the branches of the software design and summing the object execution times (17)

Integration of CASE Tools. CASE tools are providing substantial productivity gains during

the initial phases of software development, but CASE tools haven't generally been integrated with

-,oftware coding, debugging or testing. This is largely due to the file based architectures discussed

previously Nonetheless, there are some ongoing attempts to alleviate this problem and provide

data availability across all phases of the development effort. The following paragraphs provide

iinsight into some of these efforts.

Standardized File Interchange Solution. One effort to solve the problem of CASE con-

nectivity has been proposed by Cadre Technologies (Providence, RI), a leading CASE vendor.

Fheir proposal has been submitted to the Electronic Design Interchange Format (EDIF) Techni-

";I] Subcommittee. which makes recommendations on standards to the American National Stan-

-larls Institute (ANSI). EDIF Review Process Committee members include a rather impressive

list of well-known companies including; Advanced Technologies Applications. the Aerospace Corp..

.\p1ollo Computer. Applied Microsystems. Atherton Technology, Cadre Technologies, Deere and

Uo . E-Systems, Expertware, Hewlett-Packard, Index Technology. Integrated Data Ltd., I-Logics.

Mark V Ltd.. ProMod, Ready Systems, Sage Software, and Textronix. The benefits of an EDIF

-tandard, according to Vizard, will include more competition among CASE tool vendors, greater

31



compatibility among products, increased specialization for particular CASE tools, better bench-

mark comparisons, and greater integration between contractors and subcontractors, irrespective of

the CASE tools they are using (39). Basically, this adaptation of the EDIF standard will allow

,e;'h tool vendor to exchange data through a standardized interchange file format. Unfortunately,

the standard has not yet been approved by all parties.

.ficroprocessor System Development Solution. To provide CASE tool integration within

the embedded system development arena, Mficrocase (Beaverton, OR) is teaming up with Cadre

Technologies. Microcase manufactures the Software Analysis Workstation, an IBM PC-based sys-

tem that provides performance optimization and verification for embedded software. The two com-

panies are now developing an interface that will let data from the Software Analysis Workstation be

captured by Cadre's data base. Microcase also sells compilers, debuggers, and in-circuit emulators.

The partnership with Cadre gives Microcase the opportunity to build a complete microprocessor

development solution, from front-end CASE tools to coding, hardware-software integration, and

test (14).

1V4X/CDD-Excelerator Solution. There are other ongoing efforts to integrate CASE

tools across the software life cycle. Index Technology has developed a link integrating its systems

; nalysis and design software, Excelerator/IS, with the VAX Common Data Dictionary, CDD/Plus.

Excelerator/IS is the preeminent CASE system for commercial systems analysis and design. CDD/Plus

was discussed in the previous section (37).

.4 Generic DBMS Solution. Goering discusses a standardization effort undertaken by

Atherton Technology (Sunnyvale, CA) and Digital Equipment Corporation (Marlboro, MA) (15:28).

[heir solution, currently called ATIS, involves defining a way for tools to link into a consistent data-

maanagement system. The ultimate result will be a public-domain, nonproprietary database stan-

lard. Companies involved include Atherton Technology, Digital Equipment Corporation, Apollo

32



(omputer, Cadre Technologies, Ford Aerospace, Hewlett-Packard, IBM, Index Technology, Inter-

active Development Environments, Interleaf, RCA, Rockwell, and Sun Microsystems. This effort

attempts to accomplish the same goal as the proposed EDIF standard previously discussed. How-

ever. the ATIS effort allows a so-called "deeper level of integration" by defining a common way of

managing multivendor data, as opposed to the simple data interchange format proposed by Cadre's

EDIF solution. ATIS defines an object oriented methodology that provides an interface between

CASE tools and data-management services, and it establishes models for such procedures as version

control, security and access control, and transaction control. According to Goering,

The tool interface is based upon a predefined, single-inheritance hierarchy of data types.
As is typical in object-oriented programming, each type has associated messages (such
as open, merge and check-in), methods (pieces of code that implement messages) and
properties (such as child and parent). To add a new tool, the tool integrator can either
use existing types or add a new subtype. A new subtype can inherit existing methods
and messages, or new methods and messages can be added. A tool that's designed with
ATIS in mind can be integrated more efficiently than an existing tool. By supporting
the predefined types, the tool can exchange data more efficiently and avoid duplicating
storage. ATIS doesn't mandate a specific system for implementing a management ser-
vice, nor does it dictate a specific type of data base. It does however, set forth some
conceptual models that describe the execution of messages. Under the current version
control model, for example, two users can open a file concurrently and update it locally.
After the files are checked in, the management system merges them into a new version.
ATIS provides several types of models including those for security and access control,
which determines who has clearance to access data; those for naming services, which
establish a file naming methodology; and those for transaction control, which guarantee
data base consistency during concurrent multiuser access. The ATIS group also plans
to address correspondence control, which establishes relationships between objects in
the database. Another area that will be considered is data access and communication
across a network. (15:28)

.4FIT's Common Database Interface Solution. Many of the same problems being ad-

drossed in the commercial marketplace are also being addressed by the Software Engineering Lab-

oratory here at AFIT. In his recent thesis effort, Connally designed and built an interface into an

iigres database which captures information from the analysis, design, and coding phases of the

,oftware life cycle (9:9). Figure 11 illustrates Connally's basic idea. The system allows the require-

ments phase data dictionary editor, the design phase data dictionary editor, the coding phase data

33



dictionary editor, and the SAtool editor to communicate, via a standard data file, with a central-

ized database. In theory, his system provides an ideal solution. However, several issues complicate

things. First, the analysis tool, SAtool, runs on a Sun workstation and the Data Manager runs

on a VAX 11/780. This requires network transfer of Connally's standard data file. Also, the data

is being captured in a relational database. This requires a large number of relations as discussed

earlier. As a result, the transfer of data to and from the Ingres database takes 10 - 15 minutes per

,cs~ion. In short, we have less than an ideal solution. Appendix E includes a typical Data Manager

REQUIRE

DD

DESIGN STNADDATA VAX

DD DA. Como Da a NAGER 11/78 

CODE

[ SADT [FUTURE

SEDITOR TOL

I (9:28)

Figure 11. Common Database System Structure

34



S uni mary

This chapter presents a brief overview of the IDEFo language, and the Exodus extensible

DB.IS. It also investigates the use of database management systems to support computer aided

oftware engineering (CASE) tools. The connection (or lack of connection) between CASE tools

and DBMS is considered. Since many commercial CASE tools do not seem tu use relational DBMS

in their implementation, and in light of the difficulties illustrated in this chapter, one can infer

that current relational technology may not be the ideal way to manage CASE tool data. The

AFIT SAtool scenario establishes that CASE tools could definitely benefit from the use of a DBMS

because of the reduced data redundancy, crash recovery, concurrency control, and ease with which

ad hoc queries can be made. Obviously, it's not yet clear as to whether the nested-relational DBMS

will actually provide a tractable solution.

The chapter points out three commercialized databases explicitly designed for use by CASE

tools. It looks at several attempts to provide CASE tool integration across the entire software life

,'ycl,: included were of AFIT's ongoing efforts in the area.

35



III. METHODOLOGY

itroducthon

The IDEFO abstract data model and its relational and nested-relational DBMS implemen-

tations are presented in this chapter. After introducing certain notational adaptations to Chen's

eit ity-relationship analysis methodology, an E-R analysis is used to develop an abstract data model

of IDEF 0 . This model helps mitigate some of the ambiguities inherent in IDEF0 . The model is

divided into two parts representing the analysis data (the essential data model) and the graphical

data (the drawing data model). This dual modeling approach allows for the extraction of analysis

data without having to deal explicitly with the IDEF 0 graphical language. Relations corresponding

to the E-R diagrams are then developed, stepwise refined, and mapped into a relational database

design. An example database instance is developed. The relational design is implemented within

Ingres Corporation's relational DBMS (Ingres) and loaded with the example data. SQL queries are

developed to extract drawing data and essential data from the database. The relational design is

transformed into a nested-relational design. The relational database instance is transformed into

a nested-relational instance. SQL/NF queries are developed to extract drawing data and essential

data from the nested- relational database.

Extended E-R Votation

As mentioned earlier, Codd's relational data model is the de facto database standard (7).

lHowever, several other models have been proposed, including Chen's entity-relationship (E-R)

inodel (6). The E-R model includes the concepts of entities (represented by rectangles), attributes

(represented by ellipses), relationships (represented by diamonds), and the links between them

(represented by lines). One of the advantages of the entity-relationship model is that it allows

for easy1 mapping into a relational design. An E-R diagram based upon an example in Date

'NMany E-R design tools actually do this mapping,

36



Figure 12. Modified Entity- Relationship Notation

is shown in Figure 12 (10). This drawing illustrates certain extensions to Chen's E-R notation

which make the E-R diagrams more understandable by humans. In particular, a line is added on

the side of the relationship construct to clarify how it relates to the corresponding entities. For

example. Figure 12 is read "supplier supplies parts." Additionally, the cardinality is now explicit.

tor example, Figure 12 is read, "supplie supplies zero to many parts," and "parts are supplied by

oiie to many suppliers." Finally, an asterisk is associated with the attribute which serves as the

ksy. e.g.. s# is the key attribute for entity, supplier.

JDEFo A4bstract Data Model

[ni order to facilitate development of a DBMS implementation of the IDEF 0 language, an

ihstract data model of the language is constructed. This abstract data model consists of two parts,

the essential data model, and the drawing data model; the concept is illustrated in Figure 13. This

elal modeling approach allows for the extraction of analysis data without having to deal explicitly

oirh the IDEF0 language, i.e., without having to 'walk through" the various drawings.

[he IDEF 0 may sentia data model captures those portions of the language which represent the

IIIderlying semantics of a particular analysis (an [DEF0 analysis could actually be represented by

37



IDEFo
Essential

Data
Model

IDEF0Al-tract
15ata

IDE~oModel

Drawing

NED~

Figure 13. IDEF 0 Abstract Data Model: Essential Data and Drawing Data

infinitely many drawings by just moving one box a little on the diagram). Perhaps an analogy will

better explain the concept. Say a good friend is going on a trip, and you wish to bid him goodbye.

There are any number of different ways this could be done. A card that says "good riddance," a kiss,

a handshake, a bon voyage party, etc. Now clearly, each of these actions is syntactically different.

yet they all convey to the human the same semantics, i.e., 'goodbye." In a similar sense, an IDEF 0

analysis may be syntactically expressed any number of ways, yet still convey the same semantical

information to a human interpreter. It is this underlying --essential" data which is captured by

the essential data model. This includes, for example, activities and their children, as well as data

,lownts an(d their children. It does not include, for example, the location of the boxes or arrows

which graphically represent the activities and data elements.

The drawing data model, on the other hand, encapsulates the graphical constructs which

represent the particular IDEFO analysis. It contains such information as the location of the boxes

which graphically represent activities, the line segments which graphically represent data elements,

various other graphics artifacts, such as the location of "squiggles," the location of footnote markers,

38



some of the graphics "'short-hand" such as double headed arrows, etc. This drawing data is used

to actually draw an IDEFO diagram.

The entity-relationship method is used to represent both the essential data model and the

irawing data model since it retains many of the semantics (for a human interpreter) of the actual

data being modeled.

Essential Data Model. As described earlier, the IDEF0 essential data model captures those

,nortionq -f thp language which represent the underlying semantics of a particular analysis. This

includes, for example, activities and their children, as well as data elements and their children. It

[, l rot include, for example. the location of the boxes or arrows which graphically represent the

;Jtivities and data elements.

In order to allow for an understandable, yet complete representation, the E-R analysis of the

es-sential data model is done in two parts that complement one another. The first part shows the

activity model. with the details about data elements left out. The second part shows the data

ol et, nt model while leaving out the details about the activities.

Figure 1- illustrates the essential model associated with IDEF0 activities and Figure 15

illustrates the essential model associated with IDEF0 data elements. Each of the entities and

relationships for both E-R diagrams is explained in Table 1. Most of the attributes include a

reference to show why the given attribute was necessary.

39



project

inputs in part of I m

outputs composed o

M Is n name
controlled

data b
ode numbe

-lement
........... .......

In Is 0 n 0 description

mechanize

b version

node number analyzes

0 n calls I M chan es

date

historical
activity 

*author
1 M 0 n

based on analyst

project

...................

type

ref 
jefined

-Isewhere
f ren .................

Figure 14. IDEFO ACTIVITY Essential Data Nlodel

.10



: ....................

project m
part of

.................. ........ .........
description

name
0 n M 0 1

inputs

1 M
bas d on

outputs

m

ISA
Jata type

mIs

controlled
atomic

by minim m
activity data item

........... .......
axim

2 M ran emechanize

by 0 M

consists of M

inalyst
analyzes

................. --hanges 1 0 1 can have

0 n

date 11 as an

version 0111

values...................

lvfined 
comment

-kwhere

.................. w here use

Figure 15. IDEFO DATA ELEMENT Essential Data Iviodel

41



Table 1. Description of Components in the Essential Data Model

E-R construct description
activity This weak entity, which is existence dependent upon project. represents

the IDEF 0 activities. Attribute node number is the discriminant, and name
captures the name of the given activity (24:13-14). Attribute, descrzption,
allows the analyst to describe the activity (16:12).

composed of This relationship shows that a given parent activity is composed of zero to
many (0:m) child activities. It also shows that each activity has one parent
activity. The 0:1 notation accounts for the fact that the A-0 activity does
not have a parent activity (16:12).

analyst This entity is used to capture information about the analyst who performed
the analysis. The reason for making analyst an entity, rather than an at-
tribute of activity, is so that it might be tied into a personnel database. The
entity, analyst, currently has the single attribute, author, which identifies
the person who performed the analysis (16:12).

analyzes This relationship expresses the fact that a given analyst analyzes zero to
many activities (or data elements). Note that the current model only allows
an activity (data element) to be analyzed by one analyst. Attribute, i,er-
szon, is used to record version information; date indicates when the analysis
was performed; changes captures change information about a given activity
(data element) (16:12).

project This entity identifies the project to which each activity (data element) is
assigned. Key attribute, pname, indicates the name of the project (16:12).

part of This relationship indicates that an activity (data element) is part of ex-
actly one project, whereas a project contains one to many activities (data
elements).

ref This entity captures any references associated with an activity (data el-
ement). Key attribute, reference, identifies which reference is involved.
and attribute, type, identifies the type of reference (16:12). Basically, this
entity allows a library of various documents such as DoD standards, user
requirements, contractual clauses, etc., to be tied to the given activity (data
element).

based on This relationship indicates that a given activity (data element) is based on
one to many references, anid that a given reference is the basis for zero to
many activities (data elements).

historical activity This entity is primarily used as a convenience so that the database does not I
have to be loaded with analyses which were previously accomplished. At-
tribute, project, indicates which project contains the historical activity, and
attribute, node number, identifies the specific activity withi, the project.

12



Table I (continued): Description of Components in the Essential Data Model

E-R construct description
calls This relationship indicates the fact that an activity can call zero to many

previously completed (historical) activities, and that a given historical ac-
tivity is called by one to many activities (30:33).

inputs This relationship indicates that an activity can input zero to many data
elements. Ross's SA (and the IDEF 0 subset) only require activities to have
control data elements and output data elements (30:20). Note that the

entity, data element, is expanded in the next section.
outputs This relationship shows that an activity must have at least one but can

have many output data elements (30:22).

is controlled by This relationship shows that an activity can have one to many control data
elements (30:22).

is mechanized by This relationship indicates that an activity can have zero to many mecha-

nism data elements. Ross's SA (and the IDEF 0 subset) only require activ-
ities to have control data elements and output data elements (30:20).

data element This weak entity, which is existence dependent upon project, represents
the IDEF0 data elements. Attribute, name, which is the name of the data
element, is the discriminant (24:14). Attribute, description, allows the
analyst to describe the data element (16:12).

pipe This entity is a specialized data element, as illustrated via the ISA construct
on the E-R diagram. It has no additional attributes, but merely indicates
that the data element is actually a pipe containing at least two other data

elements (30:20).

consists of This relationship shows that a pipe consists of at least two data elements,
and that a data element can be contained within at most one pipe.

atomic data item This entity is also a specialized data element for capturing data that have
atomic values, i.e., are not pipes. Attribute, data type, indicates the type of
data (in the Pascal or Ada sense); minimum is the minimum data value, if
applicable, mazmum is the maximum data value, if applicable, and range
is the data value range, if applicable (16:14). In the case that none of
the attributes are applicable, entity values, as described below, probably
applies.

vales This entity is used to accommodate atomic data items which have enumer-
ated values, e.g., color can have values red, blue, and green. The entity has
a single (key) attribute, value (16:14).

can have This relationship ties the atomic data item entity to its corresponding values
entity.

alias This weak entity, which is existence dependent upon data element, cap-

tures any aliases that the given data element might have. Attribute, name.
is the name of the alias and the discriminant of this weak entity set, at-
tribute, comment, is used by the analyst to clarify why the alias was needed,
and attribute, where used. indicates where the alias is used (16:14).

has an This relationship shows that a data element can have zero to many aliases,
and that a given alias corresponds to exactly one data element.

43



Drauing Data Model. As discussed above, the drawing data model represents the actual

graphical constructs, e.g., boxes, line segments, etc., used to represent the particular IDEF0 anal-

As with the essential data model, the E-R analysis of the drawing data model is done in two

parts that complement one another. The first part of the analysis shows the activities and other

graphical constructs, e.g., squiggles, etc., with the details about data elements left out. The second

part only shows the data element model.

Figure 16 illustrates the drawing model associated with IDEF 0 activities and Figure 17 illus-

trates the drawing model associated with IDEFO data elements. Each of the entities and relation-

ships for both E-R diagrams is explained in Table 2. As appropriate, a reference is given citing

why the entity, relationship, or attribute is needed.

44



x y

represented

......... ....... 
by

LM

c-number 
drawn on

1

., iposerl 
s eet I contains

is

note

x1

yl squiggle

x2

S
y2

.......... y3 x4
text

iefined FEO

t-ls where
..................

Is

meta-note x footnote

y

Figure 16. IDEFO ACTINVITY Drawing Data Model

45



x

1 correspon s Om
label

to

.................

m Is

drawn
on ........

I

x 1
Is sheet

in line

> gment starts
from se ...................

O:n with

y
1 n

0 m
x

1 n
ends

with 
is

y

number

L-oundar),

arrow

rN Pe tunnel

all 
turn

type

type
........ ..... label

Figure 17. IDEFo DATA ELEMENT Drawing Data Model



Table 2. Description of Components in the Drawing Data Model

E-R construct description
box This weak entity, which is existence dependent upon activity, captures the

graphical construct which represents an activity on the IDEF0 diagram. At-
tributes, r, and y, indicate the location of the upper left hand corner of the
box (all boxes are the same size). The attribute, visible DRE, corresponds
to Ross's detail reference expression. In Ross's words "'The omission of a
detail reference expression indicates that the box is not further detailed in
this model" (30:33).

is represented by This relationship simply indicates the one to one correspondence between
an activity and its graphical representation, box.

activity This entity is described in the section dealing with the essential data model.

I sheet This weak entity, which is existence dependent upon activity, captures the
fact that an activity is decomposed. It has the single attribute, c-number
(24:17). Note that c-number is used as the DRE symbol on the parent
diagram.

is decomposed on This relationship ties an activity to the sheet upon which it is decomposed.
if such a decomposition exists.

drawn on This relationship ties a box to the sheet upon which it is drawn.
graphics artifact This weak entity, which is existence dependent upon sheet is a generalized

entity which includes note and squiggle (30:20).
contains This relationship indicates that a given sheet can contain zero to many

graphics artifacts.
note This entity is used to capture the location of note markers, and it is the gen-

eralized entity for both text notes (footnote and meta-note) , and FEO
(30:20). There are two attributes, x, and y, which indicate the locatior of
the note marker on the diagram.

squiggle This entity simply contains the four ordered pairs which denote the location
of a squiggle on the sheet (30:20).

text This entity, which is a member of entity, note, as seen from the ISA con-
struct, captures the text for meta-notes and footnotes. Attribute, contents,
holds the text of the note and the ISA construct indicates the type of note.
i.e., footnote or meta-note (30:20).

FEO This entity, which is a member of entity, note, as seen from the ISA con-
struct, captures the drawings associated with the for exposition only (FEO)
(30:22).

footnote This entity is a specialized type of text note as seen from the ISA construct.
Attributes x, and y, are the location on the drawing where the footnote is
placed.

nieta-note This entity is a specialized type of text note as seen from the ISA construct
on the E-R diagram.

label This weak entity, which is existence dependent upon data element, cap-
tures the label associated with a data element, as well as the location of
the label on the diagram. Discriminant attribute, label, is the label itself.
and attributes, z, and y, are the location of the first character of the label.

.17



Table 2 (continued): Description of Components in the Drawing Data Model

E-R construct description
corresponds to This relationship connects a data element to it's label. A data element

can have zero to many labels, but a given label can only refer to one data
element.

data element This entity is described in the section dealing with the essential data model.
line segment This weak entity, which is existence dependent upon data element, cap-

tures all the line segments from which the graphical representation of a
data element is built.

is built from This relationship simply indicates that a data element is graphically repre-
sented by at least one but perhaps many line segments.

is drawn on This relationship indicates the sheet on which a particular line segment is
drawn. It also indicates that a sheet can have one to many line segments
drawn on it.

symbol This weak entity, which is existence dependent upon line segment, is a
generalized entity used to capture the type of symbol with which a line
segment either starts or ends.

starts with This relationship connects a line segment to the symbol with which the
line segment starts. The two attributes, X, and y, are the location of the
starting symbol. Note that a line segment can start with more than one
symbol, e.g., an arrow and a dot.

ends with This relationship connects a line segment to the symbol with which the line
segment ends. The two attributes, r, and y, are the location of the ending
symbol. Note that a line segment can end with more than one symbol, e.g.,
icom code (boundary) and arrow.

boundary This entity indicates that the starting or ending symbol on the line segment
corresponds to a boundary. Attribute, type, indicates the type of boundary
(Input, Control, Output, and Mechanism), and attribute, number, is the
number of the boundary (24:22).

all This entity captures the to-all and from-all construct: the single attribute,
label, captures the to-all/from-all label (30:31-32).

tunnel This entity denotes that the line segment corresponds to a tunnel arrow; the
attribute, type, indicates if this is an external arrow that did not appear
on the parent diagram (hidden source), or if it is an arrow that touches
an activity but does not appear on that activity's decomposition (hidden
destination) (24:24).

turn This entity is used if the line segment starts or ends with a turn. Attribute,
type, determines the type of turn (right-up, left-up, right-down, left-down,
up-right, up-left, down-right, and down-left).

arrow This entity is used if the line segment starts or ends with an arrow. At-
tribute type determines the type of arrow (right, left, up, and down).

(dot This entity is used in the case of two-way arrows (30:20).
This entity is used if the line segment does not have a starting or ending
symbol, e.g., the segment simply connects to another segment and therefore
does not have a starting symbol.

48



!DEFl Relational Database

This section considers some of the design trade-offs associated with the relational implemen-

tation of the IDEFf database; the mapping of the E-R model into relations an example database

for the relational design; the Ingres implementation of this design; and SQL queries which extract

data from the Ingres implementation.

Design Trade Offs. In coming up with the relational design, several trade offs are considered.

With one exception, the relational design retains the explicit division between the essential data

; t1l drawing data. The exception is the relation, activity, which includes both essential data, and

drawing data. The justification is simple. Fully separating the activity from its box representation

results in either; a significant amount of replicated data, e.g., name (essential), name (drawing),

node (essential), node (drawing), etc.; or requires all queries associated with retrieving box data to

involve joins, which are costly. In short, the drawing data abstraction, box, and its essential data

; hstraction, activity, are both contained in the same relation.

In the interest of efficient queries, seemingly redundant "id" attributes are added to certain

r'lations. For example, the attribute, project-,d, in relation, project, is redundant since the at-

tribute name is a superkey. However, a query involving a 4-byte integer project-id is intuitively

more efficient (time wise) than a query involving a 12 byte character string.

All the relations corresponding to weak entities have a globally unique .-id" attribute which

liminates the need for extraction of superkeys from the relation on which the given weak entity is

xilstence dependent. This is done in the interest of of efficiency (relative to queries). An example

is the attribute, node-id, in the activity relation. Obviously the "real" superkey for activity is

the attribute pair. node, project-name. Once again, a 4-byte integer comparison is more efficient.

Several of the drawing data relations have the sheet-id attribute included in them, whereas

the E-R diagrams show no such direct relationship. This is done to eliminate the need for multiple

joins. A good exal)le is the arrow relation. Obviously, ajoin between arrow, symbol, segment.

49



and sheet is needed to determine which arrows go on which sheets. By simply adding the sheetld

into the arrow relation, the joins are eliminated. Clearly this generates additional problems relative

to redundancy and consistency. However, it is felt that the sheet-id attribute is not like to change

frtquently, whereas queries to draw the diagrams will occur frequently. In short, the decision, while

increasing redundancy and creating an increased potential for inconsistent data, provides a more

efficient implementation (time wise).

Finally, some of the entities and relationships were collapsed into a single relation; some were

renamed to make their roles more clear. This section includes tables which show the connection

between the requirement (as manifested in the E-R analysis) and the implementation (as manifested

in the relational design).

Relational Design. In developing the relational design, the approach taken was to initially

do a straight one-to-one translation from the E-R diagrams, and then through stepwise refinement,

reduce the tables as alluded to above. In fact, it took 21 iterations to get the relations into the

format shown in Table 3. The bold faced header indicates the name of the relation and a brief

description of the relation. This header is followed by a three column layout which shows the name

,of each attribute. its type (e.g., integer4), and a brief description of the attribute.

50



Table 3. Relational Design
act2act cross reference parent activity to its child activities
parent-node i4 identifies the parent activity
child-node i4 identifies the child activity
act2data cross reference activity to its data elements
node-id i4 identifies the activity
data-id i4 identifies the data element
icomtvpe cl I=input, C--control, O=output, M=mechanism
act2hist cross reference activity to historical activity being called
node-id i4 identifies the calling activity
hist-id i4 identifies called historical project/activity
act2ref cross reference activity to it references
node-id i4 I identifies the activity
ref-id i4 identifies the reference
activity IDEF 0 activity or its box representation
node-id i4 key attribute identifies activity
node c20 node number for activity
name c25 name of activity
projectid i4 identifies the project
author-id i2 identifies the analyst
version clO activity version
date c8 date this version was created
x i2 x-wise location of box representation

y i2 y-wise location of box representation
visiblefDRE il -1 = activity is decomposed, n = not yet
sheet-id i4 sheet on which this activity appears
act-changes changes made to the activity

node-id i4 identifies the activity
changes c60 description of the change
act-descr descriptions can be multiple lines
node-id i4 identifies the activity
line-no i2 keep description lines in proper order
desc-line c60 one line of the description

51



Table 3 (continued): Relational Database Design

alias data element can have multiple aliases
dataid i4 identifies the data element
name c25 name of alias
where-used c25 where alias is used
comment c25 why alias is needed
analyst person doing the analysis
author-id i2 T key attribute identifies analyst
author c20 name of analyst

arrow type of arrow
symbol-id i4 key attribute identifies arrow
arrow-type i 0 = up, I -- down, 2 = left, 3 = right

boundary ICOM codes for boundary arrows

symbol-id i4 I key attribute identifies boundary symbol
icom-code c2 1, C, 0, M (input, control, output, mechanism)
data2data cross reference pipe data element to its children
parent-data i4 1 identifies the parent data element

child-data i4 I identifies the child data element
data2label cross reference data element to its labels
dataid i4 I identifies the data element
labeldd i4 identifies the label
data2ref cross reference data element to its references
data-id i4 I identifies the data element
refdd i4 identifies the reference
data2value cross reference data element to its data type values
dataid i4 I identifies the data element
value..d i4 identifies the data type value

data-changes changes to the data elements

dataid i4 I identifies the data element
changes c601 description of the change

data-descr descriptions can be multiple lines
dataid i4 identifies the data element
line-no i2 keep description lines in proper order

desc-line c60 one line of the description

data-elem aIDEF data element
data-id i4 key attribute identifies the data element
name c25 name of data element
project-id i4 identifies the project
author-id i2 identifies the analyst
version edO data element version
date c8 date this version was created

52



Table 3 (continued): Relational Database Design

data-ange range of this atomic data element
data-id i4I key attribute identifies the data element
data-range c60 range of legal values
data-type data type of this atomic data element
datajd i4 1 key attribute identifies the data element
type c25 data type
data-value legal values for enumerated atomic data elements
valueld i4 key attribute identifies the value
value c15 the actual value
dot type of dot (Ross's two-way arrow notation)
symbol-id i4 key attribute identifies dot
dot-type il 0 = above-right, 1 = below-right, 3 = below-left
footnote location of actual footnote text
graf-id i4 key attribute identifies the footnote
x i2 x-wise location of actual text
y i2 y-wise location of actual text
feo for exposition only (picture)

graf-id i4 key attribute identifies the FEO
picture c60 perhaps the name of a graphics file?
graphics graphics artifacts
graf-id i4 key attribute identifies graphic artifact
sheet-id 4 identifies sheet on which graphic is drawn

hist-call historical activity call
hist-id i4 key attribute
hist-proj c12 name of project containing the historical activity
hist.-lode c20 node number within the project, e.g.. A312

label label associated with a data element
labeljd i4 key attribute identifies the label
name cO name of the label
x i2 x-wise location of the label
y i2 y-wise location of the label
sheet-id i4 1 identifies sheet where label is drawn
min-iax minimum and maximum values for atomic data elements
dataid i4 key attribute identifies data element
minimum c 15 minimum value
maximum c5 maximum value

53



Table 3 (continued): Relational Database Design

note some kind of note
graf-id i4 key attribute identifies the note

label cl the label associated with the marker
x i2 x-wise location of the marker
y i2 y-wise location of the marker

note-text contents of a note can be multiple lines

graf-id i4 key attribute identifies note contents

line-no i2 keep contents lines in proper order

text-line c60 one line of text for the note
project project (model) name

project-id i4 key attribute identifies project (model)
name c12 project name

reference references can be multiple lines

ref-id i4 key attribute identifies the reference

line-no i2 keep reference lines in proper order

refline c60 a line of this reference
ref.type type of referener±

ref-id i4 key attribute identifies the reference

reftype c25 type of reference
segment line segments graphically representing a data element

seg-id i4 key attribute identifies the line segment

data-id i4 data element for this segment
sheet-id i4 sheet where the segment is drawn

xs i2 x-wise point where line segment starts
ys i2 y-wise point where line segment starts

xe i2 x-wise point where line segment ends

ye i2 y-wise point where line segment ends

sheet sheet containing activity

sheet-id i4 key attribute identifies the sheet

c-number i4 Ross's c-number
squiggle Ross's famous squiggle

graf-id i4 key attribute identifies the squiggle
xl i2 location of the four points

yl i2 which connect in the order
x2 i2 1 - 2 - 3 -4
y2 i2 to make the squiggle

x3 i2
y3 i2
x4 i2
y4 i2

54



Table 3 (continued): Relational Database Design

symbol segments start and end with many kinds of symbols
symbol-id i4 key attribute identifies the symbol
seg-id i4 identifies the segment associated with this symbol
sheet-id i4 identifies sheet on which the symbol is drawn

x i2 x-wise location of symbol
v i2 y-wise location of symbol
to.from-all label for to-all and from-all arrows
symbol-id i4 key attribute identifies the symbol
tfalabel cl label in the to-all from-all circle
tunnel Ross's famous disappearing arrows
symbol-id i4 key attribute identifies the symbol
tunnel-type il -1 = hidden source, 0 = hidden destination
turn type of turn, combos of up, down, right, and left
symbolid i4 key attribute identifies the symbol
turn-type il 0=ru, l=lu, 2=rd, 3=ld, 4=ur, 5=ul, 6=dr, 7=dl

Essential Data Requirements to Design Connection. Table 4 shows the connection be-

tween the essential data requirements (as manifested in the E-R analysis) and the implementation

(as manifested in the relational design). The notation entity.attribute, and relation.attribute is

used to denote a particular attribute for a given entity or relation.

Drawing Data Requirements to Design Connection. Table 5 shows the connection be-

tween the drawing data requirements (as manifested in the E-R analysis) and the implementa-

tion (a., maniifested in the relational design). As before, the notation entity.attribute, and rela-

tion.attrbute is used to denote a particular attribute for a given entity or relation.

Example Relational Database Instance. An example database corresponding to the diagrams

shown in Figure 7 and Figure 8 was constructed by hand. Appendix F has a listing of the example

Sat abase.

Relational Implementation. The relational design shown in Table 3 is implemented within

Igres Corporation's relational DBMS, Ingres. The script file used to create the relations is shown

55



Table 4. Mapping of E-R Essential Data to Relational Design

E-R construct Relational Design Construct
activity activity

activity. descrtptzon act-descr
composed of act2act

analyst analyst
analyzes activity, author_,d

data-elem.authorid
analyst. i,ersion activity. version

data.elem. version
analyst.date activity.date

data-elem, date
analyzes. ch anges actchanges

data-changes
project project

part of activity project-id
data-elem.project-id

ref reference
ref-type

based on act2ref
data2ref

historical activity hist-call
calls act2hist
inputs act2data
outputs

is controlled by

is mechanized by
data element data-elem
data element. description data-descr

pipe data2data

consists of
atomic data item.data type data-type
atomic data item.minimum min-max
atomic data item.mazimum
atomic data item.range data-range
values data-value
can have data2value
alias alias
has an alias. dataaid

56



Table 5. Mapping of E-R Drawing Data to Relational Design

E-R construct Relational Design Construct
box activity.z

is represented by activity.z

activity.y
activity. vtsibleDRE

sheet sheet

is decomposed on To find the sheet on which an activity
is decomposed, one must look at activ-
ity.sheet-id of any child of the activity
(via act2act)

drawn on activity.sheet-id

graphics artifact graphics

contains graphics. sheet-id

note note
squiggle squiggle

text note text
FEO FEO
footnote footnote
meta-note A note tuple which does not have a corre-

sponding footnote tuple is a meta-note.

label label
corresponds to data2label

line segment segment

is built from
is drawn on
symbol symbol

starts with
ends with
boundary boundary

all to-from-all

tunnel tunnel
turn turn

arrow arrow

(ot dot
niull A line segment end for which there is not

a symbol simply does not have an entry

in any of the available symbol relations,
e.g., arrow, etc.

.57



in Appendix G, as are the script files used to input the bulk data files, show the contents of all the

rabies, and delete all data from the database. The next section shows some queries used to extract

tlip drawing data from this example database.

SQL Queries. Although this thesis effort does not involve building a tool to actually draw an

IDEF 1 diagram, such a tool might require the user to supply the name of the project. Accordingly,

the queries shown below have "DM Example" as the project name.

The first query extracts the data required to begin drawing the A-0 diagram illustrated in

Ftire 7. The table immediately following the query contains the tuples that are extracted as a

rozult of the query. Note that Ingres truncates the column title to be commensurate with the data

-ize. e.g.. visible.DRE is of type integer 1. so the column title gets truncated to visibl.

select a. x,a.y,a.name,a.date,an.author,a.version,avisibl_DRE, s.c._number
from activity a, analyst an, sheet s
where a.node ' "WO" and
a author-id = an.authorid and
s sheet-id = a.sheetid and
a project-id in (
select p.project-id
from project p
where p.name - "DN Example-);

1% ly Iname Idate lauthor Iversion Ivisibllcnumber
I -----------------------------------------------------------------------------------------------------

1 11 lmanage database l02/14/89JGerald R. Morris 11.0 1 -lJ II
-------------------------------------------------------------------------------------------------- I

At this point, a drawing tool can draw the blank sheet, and fill in NODE (A-0), NUMBER

Ltlways a I for A-0). PROJECT (DM Example), TITLE (same as PROJECT for A-0 sheet), DATE.

\ IIIOR, and REV (version) on the sheet. The tool can draw the box at location (x,y) 2 . fill in

i,, amine of the activity, and enter the node number in the activity box3 . Finally. if visibleDRE is

triv, (1), the tool can put the c-number to the lower right of the activity box to denote the sheet

[he (x.y) values are only symbolic in this example, normally they represent a location on the screen
In the specific case of the AO node. the node number is a 1, not the expected 0, shame on you Douglas Ross!

58



AUTHOR. Gerald R Morris JDATE 14Ftb8 IREADER I I
PROJECT D.M Example IREV 1 0 JDATE

manage

dat abase

2

NODE TITLE DM Example NUMBER I

Figure 18. A-0 Diagram (partial drawing 1)

011 which it is decomposed (Ross's detailed reference expression). The partial drawing that results

i> hown in Figure 18.

This next query extracts all the line segments which represent the data arrows on the A-0

,lwt. As before, the table immediately following the query contains the tuples that are extracted

:1.S ot result of the query.

59



PRODECT L DM Example IE DT

from segmentss

select shs~et~s~zid ~ y

from project p,activity a

where p.project-id -a.project..id and

anode x "10" and
p name a DR Example");

1%s lyS Ixe ITS I

31 31 41 41
1 61 61 71 71
1 9 91 101 iOI

Notice that for each line segment. there are two (X,%,) pairs. These points represent I he 'nds

liplie emetswhchare lrwnbyte drawing tool. The updated partial drawing that r.os'lts

I'in -idding the line segments is shown in Figure 19.

60



The queries required to complete the A-0 drawing are shown in Appendix G. as are the queries

i..led to draw the AO diagram. In addition. Appendix G contains example SQL queries to extract

.-. 1'tial activity lata and essential data element data from the Ingres implementation. These

,lrs pro ide th, lata necessary to create the data dictionary examples hown In .-\ppendix C

ID-'F Vested ReIztional Database

[his section considers some of the design trade-offs associated with the nested-relational

\,'ri-0n of the IDEFO database: the mapping of the relational design into a nested-relational ,e, igri:

;in 'xample database for the nested-relational design; a "paper" implementation of this design: and

SQL/NF queries which extract data from the nested-relational implementation.

Design Trade-Offs. Because the nested-relational model is an extension of Codd's relational

molel. the relational design is used as the starting point. In this nested-relational design. the

drawing data and essential data are completely separated.

As with the relational design, certain "id" attributes are retained in the interest of efficient

,tines. e.g.. a 4-hyte integer comparison versus a 12-byte character string comparison

There is some redundancy in this database, e.g., some of the data in the activities rhoii wii-

-lhijed attribute are also found in the sheets relation-valued attribute. The decision to dlo t his

ib hased on the cost of joins versus the cost of redundancy. Joins between nested relation-%altil

ittributes can involve unnesting the involved relation-valued attributes, doing the join, and then

w+rin g again. This is an intuitively expensive operation. It is felt that the cost of redundatcy

,rthan offsets the cost of doing a join on the nested attributes.

Several other design trade-offs are considered during the development of this nested-rlat innal

r'-ion. In particular; whether to nest data elements inside of activities, activities inside of data

l,i.tits. or neither; whether to nest data elements inside data elements (recursively); and whether

to ircursively nest activities inside activities.

6 1



From a purely graphical viewpoint, the seemingly "natural" approach is to nest data elenlm'nts

in-side of activities since a given activity's decomposition "contains" data elements. However, this

quickly leads to trouble since a given data element is an input, output, control, or mechanism.

perhaps a combination of several depending upon how many activities it touches. Tie implication

f nesting data elements inside activities is that each activity which uses the data element has

to nest the identical data in its attributes. This immediately leads to a potentially high dgree

of duplication. Thus there is again the dilemma of redundancy due to increased nesting vorsis

increased requirements for joins due to a more flattened design. In a pathalogical case, a given data

,elment might touch dozens of activities. Of course the biggest problem is that the essential data

model does not keep track of tunnel arrows (a strictly graphical construct designed to minimize

,,Lnicces.aty clutter on a diagram). This means a given data element could "appear" suddenly is

ani input (for example) to an activity without having traversed the parent activity II short, an

update to a single data element requires an enumeration of all activities. Another problem that

r,,sults from nesting data elements inside activities is that of deletion. If an activity is deleted. are

-All of its data elements also deleted? The issues described above relate to the partial dependency

problem found in the flat relational model. A full discussion is beyond the scope of this thesis but.

Oiz.oyoglu and Yuan address this problem within the context of nested-normal form (26). At any

rare, the decision is to not nest data elements inside activities, to simply put a list of data element

names and icom types inside each activity.

T'he next decision is whether or not to nest activities inside one another and whethr or

jot to nest data elements inside one another. A fully nested approach in either case exhibits

iM1omolots behavior relati-c to "when to stop" whenever queries are done because the algebra

(qt'm r language) does not support recursion and transitive closure. Perhaps this is bot illustrated

by way of a simple example involving activities (a similar example can easily be constructed for

data elements). Suppose that activities are recursively nested inside one another via relation-valued

attribute, child, Further suppose a query is issued requesting all the offspring of the AO node (in

62



flattened form) and that there are only three levels of nesting. A nested-relatiuiial ;lgebrajr

looks something like

,r(node, name(ag (M (child(/p(chi Id (acti vi ty)))))))

where ,r is the database projection operation, a' is the selection operator, 0 is a predicate identifying

the appropriate project, and M is the unnest operator (32) (8). The problem of course, n the gillrl

case, is that the number of levels of nesting associated with a particular node is not known apriori:

thus. it is not known how to construct the query. On the other hand, a similar query for a design

in which the activities are not nested inside one another could be expressed as

,r(nodename(c'e (activity))

where 0 is a conjunctive predicate identifying the project and selecting all nodes startitig witl the

-equence "AO".4 Thus. the decision is to keep activities at the same nesting level: the children are

identified via a list of node names within each activity. For similar reasons, all data elements are

kept at the same nesting level; children are identified via a list of data element names.

.Vested-Relationai Design. The IDEF0 nested-relational schema consists of a single table.

project. Unfortunately, the size of the project schema precludes the use of diagrams like those

usp, by Roth (33:100), Colby (8:5), and others. Thus, in order to make the discussion of the

,cheme comprehensible, a hierarchical approach is necessary. Table 6 is a thumb-nail bketch of

the hierarchical structure of the nested-relational design. To allow for an easier to comprehend

i,'pr,-enr ation a vertical presentation method is used.

'Recall the syntax of IDEFO requires offspring nodes to start with the parent node number. e.g .. A221 is the first
,:hild of A22 and the second grandchild of A2. Thus we can take advantage of the node number tilatimiships t,,
,le,.rtmne hierarchical relationships.

63



Table 6. Nested- Relational Design

(project)
Iproject.nams I
I -------------- I
(activities)

Inode..id Inode Iname lauthor Iversion Idate [changes Ic..number Iparent
I --------I --- I--------------------I -----------------I -------- I--------- I----------- I--------- I---------
(act..descr)

line-no I descr-l in.

I --------I ------------------------------- I
(ref rences)

ref-.typeI
I - - - - - - - - - - -- I
(ref-.ljnes)
I line-.no I ref .j.in.

I --------I ------------------------------- I
(hist..calls)

Ihist..proj Ihiat..nodo I

------- I ---------- I
(data-elems)

Idata.-nam. Iicomtype I
I ----------------- I---------- I

(children)
Inode-name I
I - - - - - - - - - -I

(data elements)
Idata..jd Iname lauthor Iversion Idate Ichanges Iparent I

----- I ----------- I-----------------I -------- I--------- I-------- I--------- I
(data..descr)
Iline-no Idescr..lineI
I -------- I------------------------------

(refrences)
ref-typeI

I ----------------------- I
(ref-.l ines)

line-no I ref-.line
I -------- I-------------------------------I

(aliases)
name Iuhere-used Icoment I
I --------- I---------------I----------I

(min-max)
Idata.Aype Iminimum Imaximum I
I ---------- I------------I ------------

(range)
Idata..type Irange

------I ---------------I
(values)

Idata..type Ivalue
------ I ---------------I

(activitees)
Inode..name IicOU..type I
I ---------------------I---------I

(children)
Idata.name I
I - - - - - - - -I

64



(sheets)

Ic-numberlnode Iname lauthor [version Idate I

I -------- I ------ I ------------- I ------------------ I ----------------- I
(boxes)

Inode Iname Ix 1y IvisibleDRE I

I - I ------------- I--I ------------ I
(segments)

[data-id I

I ------- I
(location)

INS lys Ite lye I

I--- I--- I--- I--- I

(symbols)
Ix ly Itype-sybol Isymbol-type I

I---I I I ------------ I
(squiggles)

Ix1 lyl 1x2 1y2 lx3 1y3 Ix4 ]y4 I

(meta-notes)

Ilabel IN 1y I

I - I--I--I
(note.text)

Iline-no Itext-line I
I -------- I ------------------------------ I

(foot-notes)
llabel Ire lyn Ixn lyn I
I -.. .I .... I-....I .... I .... I

(note.text)
Ilineno Itext-line I
I -------- I------------------------------I

(feos)

Ilabel Ix 1y [picture I
I ------ I---I---I --------------- I

(labels)

ldata.id [name Ix y I

I -- ---I-------------I

From the design sketch it is clear that, at a nesting level of 0. the project iwsted-'.lrirlio

',rhclnie consists of four attributes as shown below. Relation-valued attributes ( RN\A) art, idicato,

in bold type. atomic-valued attributes (AVA) are indicated in italiczzed type.

1. pro)ect-name - the name of the project

2. activities - all the activities associated with this project; this RVA captures essenti.l act iity

data only

3. data.elements - all the data elements associated with this project, this RVA ,;pttr f,

sential data element data only

4. sheets - the drawing data for the project; this RVA captures both the activity drawing ,l&ta

and the data element drawing data

65



The discussion that follows considers each of the three RVA, and their associated AVA/RVA.

At a nesting level of 1, the activities RVA scheme consists of fourteen attributes as listed

below. As before. RVA are indicated in bold type, AVA are indicated in ztaizczzed type.

1. nodeid5 - identifies the activity

2. node - node number, e.g., A32

3. name - name of the activity

4. author - name of the analyst

5. version - revision number

6. date - date of this revision

7. changes - changes for this revision

8. c-number - sheet on which this activity is drawn

9. parent - name of the parent activity

10. act-descr - description of the activity

11. refrences - why the activity is needed

12. hist-calls - calls to activities from other previously completed projects

13. data-elems - data elements associated with this activity

14. children - child nodes of this activity

The discussion that follows describes the RVA associated with the activities RVA: At a

nesting level of 2, the act-descr RVA has 2 atomic attributes; line-no (helps ensure the description

lines are retrieved in the proper order); and descl, ne (one line in the description).

'The integer valued node-id is used in lieu of node for reasons of efficiency, i.e., it's faster to compare a 4-bvec
integer than a string.

66



At a nesting level of 2, refrences consists of two attributes; ref-type (the type of referene.

e.g. MILSTD), and the relacion-valued attribute reflines (contains lines of text elucidating the

reference).

RVA reflines, at a nesting level of 3, has the two attributes line-no; and reflizne. The former

is a number to help keep the latter lines of text in the proper order.

At a nesting level of 2, the hist.calls RVA, which has the two attributes hist-proj and hlv.tart.

captures the project name and node (activity) which is being called.

The data-elems RVA (also at a nesting level of 2) has two attributes, data-namc and

tcom-type which specify the data element and its role (input, control, output. mechanism) with

respect to the particular activity.

Finally, at a nesting level of 2 is the children RVA with a single attribute node-name. This

is a list of all children of the activity .

The next RVA considered is again at a nesting level of 1. The data-elements RVA scheme

consists of fourteen attributes as enumerated below.

I. data-id7 
_ identifies the data element

2. name - the name of the data element

3. author - name of the person who did the analysis

-4. tversion - the current version number

5. late - date of the revision

6. changes - changes reflected in this version

7 parent - name of the parent data element

' Strictly speaking, this is not necessary since a child node can always be found by looking at the node nuner.

nonretheless it is included in the interest of efficiency.
7The integer valued data-id is used in lieu of name for reasons of efficiency, i.e., it's faster to compare a 4-1,.te

integer than a string.

67



S data-descr - a description of this data element

9. refrences - why the data element is needed

10. aliases - aliases for this data element

11. min-max - minimum and maximum values for atomic data elements

12. range - range of values for atomic data elements

13. values - list of values for enumerated atomic data elements

14. activitees - activities touched by the data element

15. children - children of pipe data elements

The discussion that follows describes the RVA associated with the data elements RV\ A: At

a nesting level of 2, the refrences RVA consists of two attributes, ref-type, and reflines. [he

former indicates the type of references and the latter contains all the lines which comprise r h,, 011

reference.

At a nesting level of 3, the refiines RVA consists of two attributes, ref-type which is tied to

keep the reference lines in proper order, and ref.ines which are the reference lines themnsOlv,,;

At a nesting level of 2, the aliases RVA has three attributes. These attributes indicate the

name of the alias (name), where it is used (where-used) and a comment line describing why the

alias was needed (comment).

At a nesting level of 2, the min-max RVA has three attributes: data-type (the dat;i t\ 1"- of

this atomic data element): minimum (its minimum value); and mazmum (maximum valui) Note

that this particular RVA will only have one tuple. The decision to make it an RVA is hased nil the

fact that there are null values in the case uf non-atomic data elements.

At a nesting level of 2, tie range RVA has two attributes. These attr ibuites initlil', 11,

data type of the atomic data element (data-type), and its range of values (ran qe). Note that this

68



particular RVA will also only have one tuple. The decision to make it an RVA is again based on

the fact that there are null values in the case of non-atomic data elements.

At a nesting level of 2, the values [IVA has two attributes. data-type and ?abte. The former

idontifies the data type of the atomic data element, and the latter indicates all legal values t his

applies to enumerated data types).

At a nesting level of 2, the activitees RVA has two attributes, node-name and icom-nq/,p.

The former identifies the activity touched by the data element, and the latter identifies the rolo of

thm data element (input.control.outputiechanism).

At a nesting level of 2, the children RVA contains a list of all children of this dat;I ll

(if it's a pipe), via the single attribute. data-name.

Back again at a nesting level of 1, the sheets RVA scheme consists of 13 attributes -Is

enumerated below. As before, RVA are indi-ated in bold type. AVA are indicated in ztalc,:6d

type.

I. c-n umber - the sheet identifier number

2. node - box being decomposed on this sheet

3 name - the title of the sheet

I. author - the person who drew the picture

.5. version - the revision number

d date - the date of the drawing

7. boxes - all boxes appearing on the sheet

A segruents - the line segments on the sheet

9. squiggles - squiggles on the sheet

10. neta.note - meta notes on the sheet

69



11. foot -notes - foot notes on thle sheet

12. feos - for expositions only

13. labels - labels for line segments

The discussion that follows desrribes the RVA associated with shieets: At :I 1iestimu vic

31. titK boxes RVA ha~s 5 attributes. Attribute niode is the node number. namie is tite natiimc- :th

box. x and y are the location of the upper left corner of the box, and visible-dre the ciiiin-tr'ni

which the box is decomposed or -1 if it Is niot decomposed.

At a nesting level of 2. the segments RVA scheme consists of three attributes dqitqjd. lo-

cation, and symbols. which indicate the data element being represented by the segment. and the

lI'caticr-i of the segment, and the symbols that appear at the ends of the line segmient. A.s always .

RAare indicated in bold type, AVA are indicated in italictzed type.

Inmmedliately below segments. at a nesting level of 3. the location RVA clitile corii]iIt .1

foii r at tributes rs. ijs, re. and y'e, which indicate the start and end points of the Ii it ii i

fr the given data elemient.

Also below segments at a nesting level of 3. the symbols RVA schemne consist -f -i

attrribuites; x and y Indicate the location of the symbhol tijpe-symbol is the type of sy il

irrow. boundary, dlot, to-all/from-all construct, tunnel, or turn: and syrnboL-ipc. het iilt(iprt a on)1

.,f whic-h depends upon type-symbol, indicates the symibol type, i.e.. type of arrow, theicoi'

Kh tvp. of dlot. thle labelI associated with a to-all/fromi-all construct, thle type of t tini ;ei:rr'%. .r

Ii.. t% pe of turn.

%t a tipsting le-vel of 2. the squiiggles RVA scheme consists of eight attributes r], q;J. z '-,

r.,; . . an it Iq , Fhiese attrributes indicate the four points whitch are connected t otet h'r I in t i.'

r' l.'r I - 2 - :3 - 4) to make floss's squiggle.

70I'



At a nesting level of 2, the ineta-notes RVA scheme consists of four attributes. Attribute

lahcl, is the marker label for the meta-note, x and y are the location of the meta-iote marker, and

RVA note-text contains the text associated with the meta-note.

Immediately below meta-notes. at a nesting level of 3, is the note-text RVA which has two

attributes, line-no, and text-lhne. The former attribute is used to ensure that the text lines in the

latter attribute are retrieved in the proper order.

At a nesting level of 2, the foot_-notes RVA scheme consists of six attributes: label indicates

th, foot...ote marker label: xrn and yin are the location of the foot-note marker: rn aonIn are the

location of the footnote text; and RVA note-text contains the actual lines of text in the footnote.

hnmediately below foot.notes, at a nesting level of 3. is the note-text RVA which has two

attributes, ine-no. and text-line. The former attribute is used to ensure that the text lines in the

latter attribute are retrieved in the proper order.

At a nesting level of 2, the feos RVA scheme consists of four attributes: la/, I indicates the

FEO marker label: rand yare the location of the marker; and picture is the name of the text/picture

file a.,sociated with the FEO.

At a nesting level of 2, the labels RVA scheme consists of four attributes. Attribute dcta-id

identifies the data element associated with the label, name is the label itself, and j- and y are the

location where the label is drawn.

LFiample Nested-Relational Database Jnstance. An example database, containing the saine

information as the relational database, was constructed. As before, the intent was to determine

if t h nested-relational design had any --holes." Appendix H contains a listing of the example

i,,-td-relational database.

t n a nested databai,-e which supports objects of type bitmap (say). one could actually stoe t lie ,ict ure in the
Ial abase.

71



.Vestcd-Relationzal .9nplemnentalton Unfortunately, the Exodus-based nested-relar lonal DBNIS

ra ;tod by Mankus does not support -all the capabilities required by this real world database ap-

ph.ation. AXccordingly. a -paper 1 implementation of the nested- relational design is uised. Certain

*Xt~nsIonS to SQL which support a nested-relational database have already be~en formalized hy

Rorth and others (33). fhe queries of the nested-relational IDEF0 database arel.v :'e iing

I?-th's SQL/NF syntax9 . The SQL/NF script to create the nested-relational clinia Is shown I

Appendix 1, as are the scripts to input the bulk data files into the nested- rel at iona i iniplenmentat ion.

.lv)w all data, and erase all data.

S'QL/NF Qaeries. The following query extracts drawing data from the ntsted-relational

lDE1Fr aabaase. This data is required by the drawing tool to create the A-0 diagram Shown

iii Figure 7. As with the relational queries, the data resulting from this query is Iiown, in a

pcostullated format. immediately following the query. The items delimited by parenthesis are the

relation-valued attribute names.

SELECT (SELECT ALL BUT segments.data- id, labels. data-id FROM sheets WHERE node =A0"

FROM project
WHERE project-.name = "DM Example";

(sheets)

ic-numberlnode Iname lauthor Iversion Idate I
----- I--- I--------------I ------------------ I ---------I ---------I

11 IA-O ION Example IGerald Rt. Morris 11.0 102/14/891

1 -------- I------I--------------I ------------------ I ------- I -------- I
(boxes)

node Iname Ix ly Ivisible-DRE I

---- I----------------I-I-------------
IAO Imanage database 11 11 12 1

1 --- I----------------I-I-------------I

(segments)

(location)
IT- I- Ie lye

3 13 14 14 1

*'I.Cthe nosted-i elatio)na] DBIS of \lanktis is not iised, the translati n of SQL/NF to the ( 1~all-egrat i- t



(symbols)
Ix ly Itype-symbol Isymbol..type I

1- --I- -- - - -- I --- - -- -
14 14 larrow lright-arrow I

------- I----I

16 16 17 17 1
- - -I- -- - - I

I -- - ---- - I------------I
17 17 larrow ldown-.arrou I

I ------ I------------I

I9 19 110 110 1
I --- I--I -- I- I

I -- ------ I------------I
10 110 larrow Iright-arrow I

I -- ------ I------------I
(squiggles)

Ix1 lyl Ix2 172 Ix3 173 1r4 174I

12 112 113 113 114 114 IIS IIS I

(met a-notes)
label Ix ly I

C(not e-.t ext )
Iline..no ltext-lineI
I---------------------------------- I
I---------------------------------- I

(foot-notes)
label Ixra lyin in lyn I

II I In 190 1 90 I
I-I

(niot e-text)
lline-no ltext-ineI
I -------- I------------------------------I
11 Ian example decomposition
12 Inot completedI
I -------- I ------------------------------ I

(feos)
label Ix ly lpicture I

I- -- I------------------
I- I--I-- ----------------I

(labels)
name Ix ly I

fuserdata 12 12 I
rules is is I
feedback 18 I8 1

Appendix I includes additional SQL/N F scripts which extract the drawinig d;lt,- for the AO

Ii1"'III ar.S a~woll as essential data for a typical activity', and a ty-pical data elt-inciit.

73



.Sti in in a ry

An IDE F,- atbstrtact data model is presented in thin, chaptor. The pit~ Iicst Iit for ai dI 'a

mI- dli ng approach (essential data and drawing data) is developed. The reaIi'i oUUt 'ottlL11tg to

Th. F-P d i graitns are developed. a~s Is an example database. The relaIttoral.mo ii dpemnwri I

inIiingres Corporation's relational DBMS, Ingres. SQL queries to extract ir;iwitrg hlia fronm the

relational database are constructed, and the data is used to actually dIraw some IDEE- d'iagratnis

Additional queries to extract essential data are constructed. The relational desilgn is transformed

otto a niested-relational design. An example dlatabase is constructed. SQL/NV tttt to extract

lata from the nested-relational database are constructed and used to draw IDEF) diagramns. Ad-

lit ional queries to extract essential data are constructed.

741



SIV. FI.DJ.VGS

lu troduclion

This chapter summarizes the IDEF 0 implementation within a relatioial and net,.,I-relar aial

DB.MS by comparing the two implenientations in several areas including ,ry , l lNt v. OK',, r f

the database, and ;peed of query execution.

Qtcrjy Complexity

This section considers the complexity of queries for the relational versuis i,,tfd-relational

vprsions of the IDEF 0 database. In particular, it looks at the queries associated wit h IDEI

drawing data and essential data.

.4 Definition of Complexity. Obviously a database query language complexity n,.a-mecould

include such criteria as number ofjoins, number of projects, iumber of binary comparison operators.

ntmber of unions, number of nests, number of unnests, etc. Unfortunately, some of li,, criterM

do itrt neessarily apply to SQL/NF. and others do not apply to SQL. It is kind of like comparing

ppis to orangies. Thus, in order to ensure some type of commonality, assume that coinplexity is

.i-,t a simple count of select-from-where (SF\V) clauses. This conservative app)roath actl , ,tllv fawe,,

SQL over SQL/NF as suggested by the following example:

"uippose that rl is a INF relation on scheme RI, and r2 is a INF relation on scheme R,. where
I?, = (a. b, c). and R2 = (b, d. e). Suppose it is possible to generate a nested-relation. r., on
',heme. Ri, where R3 =(a. B, c) (B is a relation-valued attribute uich that B d., Ih,

(iierv of interest is the entire database. The queries are:

-.I,. tI 1  a. ; b. r c, r 2  d. r2  e/ SQ "/

froin r, r

w,-re rl h = r h.

-0:lot ALL tito r!, /* SQL/NI" /

75



V.,irig the simple complexity measure suggested above, both qiuer Ies appear to hiv, f lip ani,,

mj IlPxitV Since t hey both have a single SFV clause. It is easy to show t hat rlh. SQL IPry. wi oh-1

ii' dyes a nat ural join, is more complex, both from a user viewpoint, n ;III i mt -in a -x,,ouij I

vu~wointThe user viewpoint is obvious: an iiitimiate kwileof tie liar huui k, % t, %%. 1

the yntiax for cr,,arilg a natural join are required. The Initernial viOWjoiiit 1, 11;1""I (11-1 -111,

k ii 'wledege of how the nested-relational implementation works. Basically. ;m fiv ci-,it

oi--imonal Imnplemenitat ion will keep all the t uples in a nested relation oii c, utijgijoui, Ilooks of

he disk. The Exodus storage manager allows for this to occur. It defines a stoirig. ohjoct a., ";i

uninterrupted container of bytes which can range in size from a few bytes to hundreds of igbes

(.)) In short, the nested-relational version requires the storage manager to ret urn :iw ur in r,

ou gosblocks from the disk. The relat ionial version, on the ot her hand %\I il hiaye t, a i~e oiiuie

IX pp of join strategy, e.g., hblock-orielited iteration, to generate the required tiiples. ( .ihll i,

ro~iilts in multiple disk accesses from non-contiguous blocks, even if both relations have clustered

idices on the Join attribute.

li1111s, by ii~ug the simple criteria above, the results are coiser~ at ive That u t, ay rtle

.\t ent to which SQL/.NF appears to be -better" than SQL is uiideist arid.

I'ho. -IIIllexi1.Y measure discussed above ran be formalizeud as, ( , (u ii) 'It, uiuuu r

1, CIIIP oa In 'Iiiq eyy. Note that C~, Is adlditive; if ext ractioni of a (hat a .t iu~o . ijir

liwii r Ii. complexity of the query for the entire data set is iven by

'I

where ( ,f, ( qf,?Y Iq,;i the roniplexity of the it h query.

76



Data definition language (DDL) statements, and data manipulation language (DML) state-

ments, which may not involve SFW clauses, need additional complexity definitions.

In the case of DDL statements, the complexity is given by by Cddt = n, + n, where u, is tie

l1im1ber of atomic attributes, and nt is the number of TABLE clauses.

For DML statements which perform a bulk load, the complexity is givn I ,., .,

where n2 is the number of atomic attributes, n,a is the number of relationalAt,,hoit nitt'llt,-..

a III ,- is the number of COPY TABLE clauses.

For DML statements which delete data, the complexity is defined as ( Ij 1 -,f, , ince

there is always at least one DELETE keyword, and n.,,, SFW clauses (a,f, = () is allowl).

The SQL and SQL/NF scripts in this thesis do not include any INSERT or I'l).VUE DML

statinents. Neither do they involve NEST or UNNEST. Accordingly. complexity m,.'irs asoci-

ated with these types of statements are not defined.

Comparison of SQL versus SQL/NF. Having formalized the meaning of -'complexity," it is

now possible to compare the relational SQL queries with the nested-relational SQL/NF ,eres..A

lirect comparison of the drawing data and essential data queries illustrate at hwr jt,, ,di1 i he

iniplicity of the SQL/NF queries i as shown In Table 7. From a more intitive ViW Fliit i,.;ti

to the nested version. all the data is nested exactly where it is needed, the roeuiront ir ois1,

iiiiized/pliminated, as is the requirement for multiple queries from multiple relationis

Table 7. Comparison of Query Scri I t Coin lexitv
Query C,_,IL

SQL SQL/NF
A-O activity drawing data 16
AO activity drawing data .19
Al activity essential data 7
untimber data element essential data 14 1
average 21.5 1

R#e!,all these numbers are conservative.

,7



The create tables scripts for SQL and SQL/NF are on the same order of complexity since.

it some point, all the atomic attributes must be defined. Even so. because of the many to nianv

r,lationships in the IDEF 0 abstract data model, the relational version needs to have a mnher of

r,lations Just to resolve the many to many conflict. The load tables scripts ar ao on the saine

, ruler of complexity since, once again, all atomic attributes must be referenced. On the other hand.

the -rase tables script for SQL/NF is clearly less complex since there is only one table to erase!

The actual complexity measures are shown in Table 8.

Table 8. Comparison of DDL/DML Script Complexities
.'JdI Cload . C',I

SQL 161 137 40
SQL/NF 113 119 1

Stze of Database

This section considers the relative sizes of the relational implementation and nested-relational

implementation of the IDEF0 database. Unfortunately, a direct comparison is not possible since

the nested-relational DBMS build by Mankus does not have all the features iiecosary to implement

a complex nested-relational application such as IDEF 0 . Fortunately, the logical coniparision is still

possible and is presented below.

Relational Logical Size. In the relational instance the algorithm for determiniig log cal size is

to :ount the number of bytes per tuple in each relation, determine the hiiiibero ,t tils. a;il then

tuiltiplx tne two. The example shown in Table 9, taken from Roth, illustrates the ileoa (33:102).

Suppose attribute, dno requires 4 bytes: dnarne requires 15; and loc reqimrer 10. A- mui there

aIr, 1) tiples in the database, Since each tuple uses 29 bytes and there are 10 tupls. the logical

sizO of the database is 29 x 10 = 290.

A similar analysis of the IDEF0 relational database instance is shown in Table 11.

78



Table 9. Simple Relational Example
Dept

dno dname loc
10 Manufacturing Austin
20 Personnel Dallas
30 Retail Austin

.Vested-Relational Logical Size. In the nested-relational instance, the approach is to .oMunt

the number of bytes used by the atomic attributes in each each relational-valued attrihit,. comut

ie total number of tuples in each RVA, and then multiply the two. The -iuipl, ,'xampe -howii in

'Fable 10, taken from Roth, illustrates the idea (33:100).

Table 10. Simple Nested-Relational Example
Supply
supplier Supplies

pa rt

42 7
8
9
10
18
20
21

45 8
10
32
34
38

56 3
5
10
41

Suppose the supplier atomic attribute tises 5 bytes, and the mrt atomic attilbit, ,,0's 3

bytes Since there are 3 occurrences of a Supply tuple and 16 occurrences of a Supplies tiple. the

logical size of the database is 5 x 3 +3 x 16 = 63. A similar analysis of the IDEF,) nested-relational

I; ral-&se is shown in Table 12.

79



The latter results bear some explanation since, in general, nestea-relations are small Ien t heir

t',lat ional counterparts. To make joins more eIficient in t he relational design. glo'w lIy uni Iue integer

id attributes were used in lieu of the "real" superkeys. Since the nested-relational v,-,'sion avoids

joins as much as possible, it would have been counterproductive to include such 'id" attributes. Not

iluding them naturally increases the size of the nested-relational model since all the attributes

tum,;t be stored. This is perhaps best understood by way of some examples.

Suppose that the activity relation had stored the 12 character project name as the join

attribute instead of the 4 byte integer, project-id, the resulting size of ain activity itiple would be

90 bytes as opposed to 82 bytes. In the case of data-elem, the size of a tuple would have been

'U1 bytes as opposed to 53 bytes. The space savings associated with the 2 byte integer. atulhorzd.

as opposed to the 20 byte character string, author, is 18 bytes per tuple for both activity and

data-elern. Perhaps the biggest savings is in the cross reference tables. For examiple., assiime

activity used its --real" key, projectnarne, which is a 12 byte character string, and nodc. which

i7 a 20 byte character string, in lieu of the 4 byte integer key. uode-id. Fuirther sippo , that

data-elem used project-name, and data-name, which is a 25 byte character string, in lieu of the 4

byto integer, dataid. Consider the effect on the act2data cross reference relation. Since attribute

iurn-code remains the same, but a the other two attribu'es, nodeild, and data-id are changed as

just described, one tuple of act2data would require 70 bytes instead of 9 bytes. In short. the size

avings associated with the relational version has to do with the design decision to use global integer

il values in lieu of the "'real" keys; it is not an intrinsic feature of the relational modcl. Fliuis, the

ne sted-relational instance, which uses 6,579 bytes, takes tup more room than the relational inwtauce.

which only uses 6,086 bytes.

80



Table 11. Logical Size of Relational Instance
RELATION BYTES TUPLES STORAGE
act2act 8 2 16
act2data 9 12 108
act2hist 8 1 $
act2ref 8 4 T2
activity 82 3 2 16
actchanges (34 0 0
act-descr 66 6 396

alias 79 0 0
analyst 22 1 22
arrow 5 12 60
boundary 6 3 18
data2data 8 6 48
data2label 8 14 112
data2ref 8 9 72
data2value 8 2 16
data-changes 64 0 0
data-descr 66 13 858
data-elem 53 11 .583
data-range 64 2 128
data-type 29 3 87
data-value 19 2 38
dot 5 0 0
feo 64 0 0
footnote 8 1 8
graphics 8 2 16
hist-call 36 1 36
label 22 14 308
rin-max 34 0 0
note 9 1 9
note-text 66 2 132
project 16 1 1(
reference 66 19 1,254
ref-type 29 13 377
segment 20 21 420
sheet 8 2 16
squiggle 20 1 20
symbol 16 26 416
to-from-all 5 3 15
tunnel 55 1 5
turn 5 8 40
TOTAL STORAGE 6 O)S06

81



Table 12. Logical Size of Nested-Relational Instance
RELATION/RVA ATOMIC TUPLES STORAGE

BYTES
PROJECT 12 1 12
activities 176 3 52S
act-descr 62 6 372 i

refrences 25 4 1()
reflines (62 (3 372
hist-calls :32 i :2
(lata-elems 26 9 23.1
children 25 2 50
data-elements 152 11 1.672
data-descr 62 14 868
refrences 25 9 225
ref-lines 62 12 744
aliases 75 0 0

rain-max 55 0 0
range 86 0 0
values 30 2 60
children 25 6 150
sheets 87 2 174
boxes 51 3 15:3
segments 4 14 56
location 8 21 168
symbols 8 26 208
squiggles 16 1 16
tneta-notes 5 0 0
note-text 62 0 0
foot-notes 9 1 9
note-text 62 2 121
feos 65 0 U
labels 18 14 252
TOTAL STORAGE 6.57 9

82



,prpd of Query Erecritzon

I Illis Pct toil considers the speed of query exec ution for the relational uq --ii-wi ion -Ind

ii-t I- relat tonal imiplementat ion of thle IDEEo database. -it ufort u na t ely. a dil' lv 1i ;i.sIi a ble

-i pa rison is not possible since thle nested-relational D BMS build by Ma uktus loe)fs to I lii% all t lie

foatiires necessary to implement a complex nested-relational application such as IDE r lIevv it

,-till possible to compare the implementations from two different perspectives. -Fhe first approrrah

:i~iuiies that tne applicable tuples are fetched from the disk as needed. Sped is dotrermined

I '" pon a con.servative assumption as to the number of disk accesses iioPolef. rho-et

;ipproach aLssumnes that thle entire data set associated withI a given project is n~iiall -i *obu li to fit

inl main mernory. Speed is determined via an order-of analysis of a typical prngrau. t li;it tailk>

t)the database via embedded language queries. The initial load at runl t ru,. and hwi il 11iialt mt

trt ninat ion time are ignored.

Dts4 I? sidonit Project Data. In order to determine the relative ."peeds of th il t s 'PUtj.ii

userat ie etinmates are made relative to physical mapping of the dlata ont, i, .1i~k

.\ssittne that the relational DBMS has mnemory resident clustered 13+ tre inlioes oni tht 'wjoin

itt ribittes. Further assume that the DBMS is "smart" enough to stote relat ins that ir,2 It l

to be, Joined in rl:ose proximity to one another on the disk. Based upon these highly optitnistic

;i-.-.iinrpt Ions. assume that it takes one disk access for every two relations Involved in a join. Formally.

t numtber of disk accesses, n,,,, for a relational (SQL) query Is given by

o here iit. I, the number of unique rclattoits Involved iii the quiery being cousiderel.

.\suine that thle nested-relational DB3MS -stores the (data in ' ntipguj-is locru u 'uu ,tiiilru.' *1 4

a1 1( that it takes two accesses t~o retrieve a given set of tinples for the pIii'rtt's oile'I Il

S 3



latter is actually a fairly good assumption. The example database instance shown above is around

,Z kilo-bytes, which includes three activities, eight data elements, and two sheets. Conidlring that

a 2k to 4k page size is typical, it seems reasonable to presume a query for a given sheet. activity.

or, data element could be done with just two accesses. As to tile contiguous storage assinuption,

Exudus definitely allows this capability as discussed in the Exodus Storage lanwigr guile (5 1)

In short, the assumptions seem to be reasonable. The last assumption is that a menory resident

index identifies the appropriate disk locations. Formally, the number of disk accesses, 71,1,, for

the given nested-relational (SQL/NF) queries is given by

flsqlf = 2.

Table 13 shows the results for the queries given in Chapter 3:

Table 13. Relative Query Speeds: Number of Disk Accesses
Query n,ql n.11,1 f
A-0 activity drawing data 17 2

AO activity drawing data 36 2
Al activity essential data 13 2
tinumber data element essential data 25 2
ave rage 22.75 '2

Memory Resident Project Data. Obviously a tool which uses the IDEF 0 database needs to

talk to the database. The mechanism with which a high-level language such as C or Ada interfaces

with the resident DBMS is the embedded query language call. The next two sections conwlder sin-h

eiiibedded query language calls for the Ingres relational IDEFO implementation and th nestd-

relational implementation. The assumption is that the entire dataset for a given project is Hinall

euo,i1 to fit into main memory. Note that certain liberties are taken relative to ynt ax. The

important issue here is the concept (semantics), not the syntax!

84



Enibedded SQL Examnple. Embedded SQL in Ingres involves the coricept of aCursor

(2,R:3-7). Basically, a "template" SQL statement is created, along with some data structures that

aire -visible- to SQL. Whenever the embedded SQL call is made, the next tuple is plIacedl in the

visi ble data structures. Consider the following C header file which defines the types needed to

-Wa in thes i cren data 'in the IDEFO database (anl analogous set of Ada type dolinit ions is -Ivenl

IIAppendix 3 ):

I. This header defin,39 the data structures that are used to capture the
drawing data from the IDEFO database via embedded query language calls
It 1s not known apriori how many tuples there are, so a linked list
structure is used.

The element names correspond identically to the attribute names used in
the IDEFO database. It is assumed the user of this header is familiar
with the database schema ...

typedef struct box{

char node(21) .namef26];

int x.y,visible.dre;
struct box *next..box; /0 pointer to next box e/

} boxptr; /e type boxptr points to a box structure 0/

typedef struct loc(

int XS,ys,xe,ye;

struct loc enext-loc;
} locptr;

typedef struct symbol(
mnt x,y;
char type..symbol (13] symbol-type [13];
struct symbol *next..symbol;
}*symbolptr;

typedef struct Beg(

locptr location;

symbolptr symbols;

struct seg enext..seg;
} segptr;

typedef struct squig{
int xl,yI,x2,y2,x3,y3,x4,y4;

struct squig *next..squig;} squigptr;

typedef struct note..txt{

mnt line-no;
char text-line(1. .61];

structtnote..txt *next-note..txt;
} notetxtptr;

85



typedef struct metal

char label[2I;

int x,y;

note..txtptr note-.text;

struct meta *next-meta;} metaptr;

typedef struct foot{

char label[2];

jut xu~yx,xnt,yn;
note-txtptr note-text;

struct foot *next..foot;

} footptr;

typedef struct feo{

char label(2);

jut x,y;
char picture[61);

struct feo *next-feo;
I *feoptr;

typedef struct label(

char nane[ll);
jut x,y;

struct label *next-label;
} 'abelptr;

typedef struct sheet(

jut c..number;

char node(21] ,name[26] ,author[2l] ,version~liJ ,date(9);

boxptr boxes;

segptr segments;

squigptr squiggles;
maetaptr ueta-notes;

footptr foot-.notes;
feoptr feos;
labelptr labels;

} shestptr;

/* and some other stuff as well *

Given this header file. which defines thle data structu res needed to draw the scr'101. 'I Ploc,.Atirp

iumst now make the apprnpriate embedded SQL calls, load the resulting tutples in thle screej dirawing

st rict 'tre, and theni call the icreen drawing procedure. The following elided rouitine iIlustrates the

Coniicep t:

86



/* Obligatory procedure header, includes, et al #/

draw-the-a-minus-zero-screen(the.project-name,....) /0 relational version */
/e required parameter declarations S/

{

/* perform necessary initialization to talk to Ingres SQL e/

/* declare C variables that are visible to SQL. lote that strings

gotta be one more since C uses a null byte to teminate strings s/
EXEC SQL BEGIN DECLARE SECTION;

char project-name; /* name of project a-
/* declare the variables for the first query */

int Xzy, /e coordinates of box e/
visible-dre, /* true if this box is decomposed 5/

c-number; /* sheet on shich it is decomposed ./
char name[26], /* activity name */

date[9], /0 date of the revision 0/
author[21], /* name of analyst e/
version[Ii]; /* revision number e/

/0 declare the variables for the remaining queries SI

EXEC SQL END DECLARE SECTION;

/* Create some local linked list structures to hold all the stuff

until you can allocate the screen drawing data structure.
Recall, we don't knoe its size yet... 0/

/I let SQL "see" the name of the project 5/

strcpy(project-name, the.project-name);

/0 Open Database */

/* Create query cursor, basically this is a prototype of the

desired SQL query that is to be performed. This
cursor is used to generate the first part of the A-0 sheet */

EXEC SQL DECLARE a-minus_O_firstcursor CURSOR FOR
select a.x,a. y, a.name,a.date,an.author,a.versiona.visiblsDRE,s. c.number
from activity a, analyst an, sheet s
where a.node a "AO" and
a.author-id - an.author.id and
s.sheetid - a.sheet.id and
a.project.id in (
select p.projectid

from project p

where p.nama - :projectname);

/* Open cursor and prepare to perform the query 5/

EXEC SQL OPEN a-minusO-first-cursor;

EXEC SQL WHENEVER NOT FOUND GOTO dunl; /* Branch when done - Ugh! 0/

/* Query loop */
while(l) { /* until the stinking goto above is taken 0/

/e Fetch next tuple via defined cursor and put the resulting
tuple into the C variables defined above e/

EXEC SQL FETCH a-minusO.first-cursor INTO
:x, :y, :name, :date, :author, :version, :visible.dre, :c_number;

/. allocate a new node to save this data ./

87



/* fetch next tuple (none in this case) ./

}

duni: /* No more tuples; do whatever clean up is necessary */

/* Close cursor 5/
EXEC SQL CLOSE a-minus.0first-cursor;

/* Define the next cursor

and grab the data in a query loop
and at each pass, allocate a new local node to keep the data,

and load it into the new node e/

/* Define the next cursor

..ad nauseauu... 0/

/* Close database ./

/* now that the data is available, create, allocate, and load a sheetptr
type data structure to send to the drawing routine e/

sheetptr the-sheet;

/* now that the data is loaded, call the draw screen procedure e/

draw-screen(the-sheet);

} /* that's all folks e/

In order to assess the worst case time complexity of this code, it is necssarv to look at the

Ilfinition of Big-O and order-of:

Definition of Big-O:
A function f(n) is of order O(g(n)) if and only if there exist constants, c > 0 and n0 > 0.
such that

f(n) < c. y(n) Vn > no

f(n) = O(g(n)) says that g(n), multiplied by some constant, c, gives an upper houm I
on f(n). (21)

The code shown above would actually involve ten different cursors and query loop,. as Pen

in Appendix G. The first loop always has exactly one tuple, and is therefore of time order. 0(1).

The second loop is of time order, 0(s), where s is the number of segm',ts on the A-0 diagram.

The third loop is of time order, 0(a), where a is the number of arrr w zymbols. The fomrtlh loop is

of time order, 0(t), where t is the number of turn symbols. The fifth loop is of time or,, ()( ,).



where u is the number of tunnel arrow symbols. The sixth loop is of time order. 0(1). where I is the

num1ber of labels. The seventh loop is of time order, O(q), where q is the number of squiggles on

the A-0 diagram. The eighth loop is of order, 0(f), where f is the number of footnotes. Although

not shown in the example A-0 diagram in this thesis, a generalized A-0 drawilu miulht Include

nuieta-notes and FEO constructs. These would require two additional loops, which wnill rimi on

the order of, 0(m) (number of meta-notes), and O(p) (number of FEO pictuireu' ;SociitelI witi

the diagram). In all the cases above, the constants would depend upon the n achiue uised. s5,tezn

loading (in a multiuser environment). etc. Nonetheless the order-of analysis, in co njunct on with

the fact that there are 10 sequential loops, does give an indication that the lmllidded,1(21, II,Ari*.-

could be potentially slow. This rings particularly true since for each of the 10 ,ne'ies. there is

a separate parsing, optimization, and extraction. In addition, the queries all involve a mtlti-way

join. As discussed in the previous section, this is likely to be an expensive process.

Embedded SQL/SF Example. The prototype nested-relational DBMS huilt by Mlankils

does not support embedded SQL/NF. Accordingly, postulate the existence of such a capahility

Assume it is along the same lines as the embedded SQL in Ingres. A call to , heldhd SOQL/NF

gets the next tuple. much like Ingres embedded SQL. However, since a "sinugle tuple," cluamus

relational-valued attributes, the embedded SQL/NF must automatically allocate space in :1 linked-

list structure which receives the data. In short, assume that embedded SQL/NF r*oquire- ; cursor.

which is again a "template" SQL/NF statement, and some linked-list data st ruict tre which is

visible" to SQL/NF. Whenever the embedded SQL/NF call is made, the next, tuple is placed in

the linked list along with all tuples in its relational-valued attributes.

Assume the header file mentioned in the previous section is available. The following elided

routine illustrates the embedded SQL/NF call:

89



/* Obligatory procedure header, includes, et al ./

dray thesa-minus.zero-screen(the-project-name,...)

/* nested-relational version */

/. required parameter declarations SI

{

/ perform necessary initialization to talk to SQL/NF 0/

/* declare C data structures that are visible to SQL/1F. */

EXEC SQLIF BEGI DECLARE SECTION;

char project-name; /e name of project e/

sheet-ptr the-sheet; /* the entire enchilada! e/
EXEC SQLNF END DECLARE SECTION;

/* let SQLNF "see" the name of the project e/

strcpy(project-name, the-project-name);

/* Open Database e/

/* Create query cursor, basically this is a prototype of the

desired SQLNF query that is to be performed. This

cursor is used to generate the entire A-O sheet e/
EXEC SQL1F DECLARE aminus_0.cursor CURSOR FOR

SELECT (sheets ALL BUT segments.data-id,labels.dataid WHERE node ="A-O-)

FROM project

WHERE project-name = :project.name;

/* Open cursor and prepare to perform the query 6/

EXEC SQLF OPEN a-minus.O~cursor;

/* Fetch next tuple via defined cursor and put the resulting

tuple into the the-sheet defined above e/

EXEC SQL1F FETCH a.minusO_cursor INTO :the-sheet;

/* Close cursor

EXEC SQLNF CLOSE a-minusO-cursor;

/e Close database 6/

/e low that the data is loaded, call the draw screen procedure ./

drau.screen(the-sheet);

} /0 that's all folks 6/

In the case of SQL/NF, there is a single cursor and query (recall there is i -itle i fpl, por

hieet). Accordingly, the procedure is of time order, 0(1). Now obviously the constant for a nested

query will be different than the constant for a non-nested query. Even so. there is a sinIgle parsin-.

optimization, and extraction. Accordingly, it seems reasonable to suggest that the SQL/NF query

will run faster. Obviously, the actual speed depends a great deal upon the particular machine,

vystem loading, etc.

90



S in mary

This chapter summarizes the IDEF0 implementation within a relational and niested-relat ional

D 1.N 1S.

A conservative definition of query complexity is presented, and used to d(wl~ti-liue the relative

complexities of SQL (relational) queries, and SQL/NF (nested-relational) queries. The average

complexity of the relational (SQL) queries is an order of magnitude (21.5 times) more complex

than the average complexity of the nested-relational (SQL/NF) queries.

The logical size of the relational and nested-relational instances are derived. The larger size

of the nested-relational instance (6,579 bytes) as compared to the relational instance (6,086 bytes)

is due to the use of integer "Id" attributes in the relational design; it is not due to some intrinsic

quality of relational versus nested-relational designs.

The speed of execution for queries is presented from two aspects; a disk based DBM.S wherein

the number of disk accesses determines the speed; and a memory resident DBMS wherein the -pee(d

'f' xecution is determined via program run time.

Disk-based relational (SQL) queries require an average of 22.75 disk accs> es. Disk-hased

n ested-relational (SQL/NF) queries require an average of 2 disk accesses.

An order-of analysis is used to determine the relative speeds of queries for the memory resident

DBMS. A program containing embedded SQL (relational) queries to extract the A-0 drawing data

rims in linear time based upon the number of graphical constructs in the diagram. A program

conitaining embedded SQL/NF (nested-relational) quereis to extract the A-0 drawing data runs in

constant time. Obviously the constants associated with the order-of analysis are depenldent upon

the particular machine, operating system, numer of users, etc.

91



V. CONCL USIONS A ND RECOMMENDATIONS

Introduction

This chapter summarizes and presents conclusions about the research: it al ,) i'lHiAd ... w0

recommendations as to further research in this area.

S n inin a ry

This research effort accomplished several objectives relative to the designi of both a rela-

tional and nested-relational database to handle the IDEF 0 analysis language data. The primary

accomplishments include the following:

1. Developed a partitioned abstract data model of IDEF0 which included:

" An essential data model.

" A drawing data model.

2. Developed a relational DBMS to handle the IDEFO language data which inclided:

" Mapping the abstract data model into a relational design.

" Implementing the relational design in the Ingres DBMS.

* Creating an example database instance.

" Developing SQL queries which extract:

- Drawing data.

- Essential data.

3- Developed a nested-relational DBMS to handle the IDEF0 language data which included:

* Mapping the relational design into a nested-relational design.

" Creating an example database instance.

92



e Developing SQL/NF queries which extract:

- Drawing data.

- Essential data.

-1. Compared the relational and nested-relational versions in terms of:

* Complexity of queries.

" Size of the database.

" Speed of query execution.

( "oncluszons

The partitioned abstract data model, while more complex, allowed the diawijg dat a to be

-,parated from the essential data.

In the nested-relational design, the drawing data and essential data were completely separated.

i this sense, the nested-rPlational version more closely modeled the abstraction generatud via the

1K- H :Analvsis

Flm omnplexity results, which were based on metrics that favor SQL over SQL/NF. clearly

-I%v,.dI th,. ;,. 1%airage of the nested-relational version over the relational version for the particular

-f quiers ronsidered. On average, the relational queries (SQL) were an order of inagnitmde

'21 - timies) more complex than the equivalent nested-relational (SQL/NF) queries.

rhe nested ielat ional instance had a slightly larger logical size when compared totl. t elat ional

,,talice It vas .,hown that this was a result of optimizing tie relational designm m a use of global

mut,eer 'id- attributes instead of the '-real" keys. Even so, the apparent beotits of .imler jli'ris

*imd faster execution times would seem to offset the increased size. Obviously from a user perspective

this is desirable (assuming the storage is available).

93



"'he query speeds of the disk-based DBMS model clearly showed the advaintag, of the u.d-

rilational version over the relational version. On average. the relational (SQL) queries 'eituired

22.75 disk accesses whereas the nested-relational queries only required an average of 2 disk accesses

This is an order of magnitude speedup. In large part. this is due to the assu mp Pi1 1 ,f a rout nuns

-rage model for the nested-relational DBMS. An object-oriented storaget, iii. ,,h ci i, Lx-i,

(t, does allow this capability.

The query speeds for the memory-based DBMS model also showed that the nlested-relat iolial

version has an advantage over the re, tional version. The running time of the embedded SQL/N F

program which extracts the A-0 drawing data is of order, 0(1); the running time of the emloded

SQL program is of order, O(max(s, a, t, u, 1, q. f, rn, p)), where s is the number of segmilnts. 0 is

the number of arrow symbols, t is the number of turn symbols, u is the iii iiii 1h1, 1 il saiiw

symbols, I is the number of labels, q is the number of squiggles, f is the number of f Ot nots., m, is

the number of reta-notes, and p is the number of for-exposition-only picture coustritzcs. Obviously

the constants associated with big-O depend upon the machine used. system loading (in a multinser

environment), etc. Nonetheless the order-of analysis, in conjunction with the fact that there are

Ii) -equential loops in the relational case, does give an indication that the emhtiblled SQL queries

could be potentially slow relative to the nested-relational case. This rings partciilarlv true sin'e

for each of the 10 queries, there is a separate parsing, optitnization, atid extractiou. in ildiltion.

t,,o queries all involve a multi-way join.

The overall conclusion is that a nested-relational data model has an advantage over a relational

tilel for this particular application (IDEFO), and the particular queries considered (drawing data

e:,:! ,ssential data).

94



Recommendations

Unfortunately. this research effort generated more questions than answer- Obviously these

questions can only be answered through additional research.

The most obvious area where additional work needs to be done is in an actual nited-rolational

implenentation of the derived design. Given a robust nested-relational DBMS. it wdI I- [ ...i1,1,

to implement both a relational version and a nested-relational version using using th, Oa IM )l3.S.

rn the relational case one would simply create tables that only have atomic valtmed attri nres.

The advantage of using the same DBMS is that the confounding influence attribttable to differelnt

machines, algorithms, data structures, etc., would be minimized. Once the two implementations

are in place, one could then develop a set of database instances/queries from which tatistically

valid conclusions could be made relative to run times, query complexities, size of the database. etc.

The thesis investigation does not consider either the relational or nested-relational version in

torms of input and update. This area needs to be addressed.

The assumptions as to number of disk accesses for the relational versus nested-relatic,nal

virsions needs to be empirically studied.

Chapter 2 discussed several commercially available DBMS that are designed explicit ly for 11se

within a CASE tool environment. An interesting research topic might ho to , * if ,)I t these

DBMS more appropriately meets the needs of the IDEFO abstract data model. In adlit ion., hapter

2 looks at some efforts to integrate CASE tool data across the software development life cycle.

In particular, the EDIF standardized file interchange solution, and the ATIS "generic DBMS"

-oltion. An interesting research topic might be to map the IDEF0 data requirements into one of

those proposed formats in order to allow the data to be available during all phases of the software

devopment process.

Another potentiAl research area concerns an embedded query language interface to SAtool

1[. One suggestion is to build an Ingres-based embedded SQL version of SAtool 1I. 'ito ,in'rface

95



should be as modular as possible such that the nested-rela-tional SQL/N F versioni could he plged

in later. Considering that SAtool 11 is written in Ada, this miodularizat ion should beposbe

The complexity measures developed in this thesis effort did not include all of thle SQL/NE

svntax. afld they ignored the complexity introduced by Joins, unions, compound predficates. etc.

.\n interesting research effort might be to develop some mietrics by which the complexity of var-

ii queries can be compared. Obviously these paramet rically based mietrics wouild liai%,- to I-

statkitically validated using a sample from some population of queries.

96



Appendix A. Some CASE Tools and lndors

The following descriptions represent some of the more popular CASE tools currently on the

market. It by no means is an exhaustive list. Nonetheless, it does give some idea as to the variety

of different products and vendors.

Adagraph Analytic Science, Arlington, VA Combines early graphical design with an Ada style
PDL. Users can define graphics idioms for tasks and subtasks, and then insert and reuse these
idioms in their designs. The tool provides general idioms for recurring tasks such as buffering,
monitoring, data movement or device driving.

Aris Software Systems Design, Claremont, CA Takes an analysis result from the Cadre Teamwork
tool and automatically creates a first-cut at an Ada program structure. Working from ,ataflow
diagrams, Aris also does a preliminary partitioning.

Autocode Integrated Systems. Santa Clara, CA Developed out ofa need to sinulate control system
operation. Working somewhat like chips, Autocode software blocks contain prevrit ten code.
Each block performs a different transformation on its inputs. The user basically wires the
blocks together on the screen. As with most other code generators. scmne of the Code must be
hand written, e.g.,the code for reading of inputs and posting of outputs to outside hardware.

Byron PDL Intermetrics, Cambridge, MA An Ada design language that lets the user add key-
words and comments in the code thus making it possible to automatically extract DoD-STD-
2167 documentation from the annotated code via the Byron Document Generator.

Designaid Nastec. Southfield, MI Based upon the Ward Mellor methodology. The user draws the
diagrams, which the system then ch .cks to ensure that the connections are legal, and that
the data items have been defined correctly. All verified information is automatically stored
in the system database.

EPOS-S Software Products and Services, New York, NY Combines graphics and PDL. It is a
design-oriented formal language used for partitioning the software design and for more detailed
design using a PDL. Users start with graphics at the higher levels, and then switch to PDL
at the lower levels. There is a module to check for completeness, consistency and module
interconnection. There are templates for DoD-STD-2167 documentation.

Excelerator Index Technology, Cambridge, MA Supports both Yourdon DeMarco and G'ane Sar-
son systems analysis methods; supports Chen or Merise entity-relationship analysis methods.
With this tool, users can develop data flow diagrams and structure charts. The tool can be
used to develop data model diagrams, entity relationship diagrams. It allows allows the user
to generate presentation graphics to present the overall system definition to users and man-
agers. All information is kept in Excelerator's data dictionary, which is one of Excelerator's
most powerful features. Every part of a graph can be described to the central project database
at the time you create it. This "record-as-you-go" feature prevents loss or unnecessary (ILI-
plication of data. Index has done quite well with it's IBM-PC based version of Excelerator.
It is probably the most well known and perhaps the most capable of the current generation
of PC based CASE tools.

Popkin Windows System Architect Chelsea Systems, New York, NYSupports the Ward Mel-
lor methodology. The user draws diagrams, the system checks them for compliance with a
set of rules, and stores the results in a data base

97



Promod/RT Promod, Lake Forest, CA Based on the Hatley control-flow and state-transition
diagrams. The user draws the required graphics with the tool's graphics editor, and then
enters control specifications et al, by way of a text editor. The results are then saved in
files. The tool can perform an automatic provisional design partitioning bhased 1ipon these
files created by the software analysis.

Ready Taskbuilder Ready Systems, Palo Alto, CA Set of tools based on Ward Mellor method.
Allows users to develop data-flow diagram, get information on intertask ,ynichroiiization and
communication, estimate concurrent execution timing, define data items, data types and Ada-
style software packages, lay out a graphical design, and then proceed to write program design
language (PDL) descriptions.

Reverse Engineering Meta Systems, Ann Arbor, MI Examines code or data dictionaries and
then automatically forms a logical view of the software. Users can look at the calling structures
of the code, get data definitions and data structures, and locate dead data and code.

Software Engineering Workbench Yourdon, New York, NY Based on Cadware's Rule Tool.
Yourdon has added its own icons and associated rules for the Ward Mellor real-time systems
method, global checking, and its own data dictionary

Stateniate iLogzx, Burlingtom, MA Interesting tool in that it can execute real-time software spec-
ifications. The simulation can be for the entire system or any syntactically complete portioni
of the system considered in isolation. The system can also generate DoD-STD-2167 docu-
mentation for use by companies developing software under DoD contracts.

Structured Architect-Real Time Meta Systems, Ann Arbor, M Implements the \Ward Mellor
software-analysis methods. This tool generates the required graphics including data-flow.
data-control, and state-transition diagrams, and state transition matrices. Users also create
structured lists and data base entries. This material is used by SA-RT to automatically enter
information into a data base.

StiperCASE Advanced Technology International, New York, NY Prompts the user to name the
Ada-like subsystems and packages. That information is used to generate subsystem, package
and task template specifications-all of which can be customized or used as is. Then the
designer moves on to templates for package, subpackage and task bodies, writing and editing
them in PDL on the screen-displayed templates.

Tags Teledyne Brown Engineering, Fairfax, VA A requirements language to express software spec-
ifications. It uses blocks and icons to create timing and flow diagrams. These specifications
can be checked to uncover static errors and then executed to simulate the real-time operation
of the software being modeled. The executable code generated from the description is in the
Ada language, but is for use only in this kind of dynamic checking, not in the final system.

TekCASE Designer Tektronix, Beaverton, OR Tool set which implements the Ward Mellor or
Ilatley method for system software analysis. It merges real-time software specification dia-
grams into a single diagram and produces an editable provisional partitioning, for software
design. A listing and evaluation routine reports on inconsistencies, prohlem areas and de-
viations from defined structured design methods. TekCASE does not do automatic code
generation, but the output of the listing routine can be edited into code stubs for the lan-
guage being used. Once the source code is completed, a TekCASE Designer routine can
convert it into structure charts, compare the charts with the final design and report on any
differences.

Toolkit Cadre Group, New Haven, CTCan be adapted to a several popular diagramming methods.
The user selects icons with the mouse or keyboard and uses them to draw the diagrams. If
a use-rule is ,iolated, a circled X appears over the affected item and an error message is
displayed. Another routine automatically enters information into a database froni informatio1
drawn on the screen. The Verify routine detects any glolal violations of rules, particularly

98



those violations that couldn't be checked during the drawing process. There's also a tool
(Cadware Rule Tool) that lets users modify existing analysis methods or set tp their own
methods for creating software diagrams

99



Appendix B. [DEFo Language Features

Ross defines 40 features of his Structured Analysis language, which "constitute the basic core

,)f the language for communication" (30:19). Unfortunately, the IDEF0 user's manual does not

iclude a single summary of the IDEF0 language as does Ross's paper. llowever. ,luring hi lhesis

effort. Johnson extracted the IDEF0 subset from the user's manual and cross referenced it to the

appropriate SA feature. The following table is adapted from Johnson's work:

Table 14. IDEF0 Language Features
SA Item No. Name

I box
2 arrow
3 input
3 output
4 control
5 mechanism,
6 activity name
7 label

12 branch

13 join
14 bundle
15 spread
18 boundary arrow
20 detailed reference expression
22 2-way arrow
24 tunnel arrow
25 to/from all
27 footnote
28 metanote
29 squiggle
30 c-number
31 node number
32 model name
33 ICOM code
37 facing page text
38 for exposition only
39 glossary
.10 node index

(19:A-3)

100



Appcndix C. S.4tool P,,iihI'

The following pages present some typical examples of the current SAtool products, as illus-

trated in Figure 20. Recognize that the new Ada version, built by Smith. may hae a slightly

dlifferent format (3.5).

diagrams data dictionary

facing page text
standard data tile

graphics file

Figure 20. SAtool Products

Typical SAtool IDEFo Drawing Outputs

The following two drawings are typical those produced by SAtool. Figure 21 represents time

s, called -A minus zero" diagram, which is basically the context diagram, and Figure 22 repispnts

rhe first level decomposition, the "A zero" diagram.

101



AUTHOR Gerald R Morris JDATE 14F.bA9 IREADERI

PROJECT DM Example IREV 1 0 JDATE I

D asi ~xrules

Fiur 21myalnAiara

12



AUTHOR~ Gerald R Morris IDATE L4F b691READER

PROJECT DM Example IREV 1 0 JDATE

userdata unumber ubemg

NODE~ ~ TIL anage tbs 
L!E

Fiue 2 Tpcl ODiga

1031



Data Dzctzonary Outputs

The following two listings are representative of an activity data dictionary SAtool product.

and a data element data dictionary product.

ACTITITY Data Dictzonary.

NAME :manage numeric data
TYPE :ACTIVITY
PROJECT :DM Example
NUMBER :A1
DESCRIPTION

This activity will
handle numbers

INPUTS :
unumber
errors

OUTPUTS :
numbermsgs

CONTROLS :

numberrules
MECHANISMS

ALIASES

COMMENT

PARENT ACTIVITY :manage database
REFERENCE:
KNR N00028-89-0123 3.3.2.1.2a

REF TYPE:

contract
VERSION :1.0

VERSION CHANGES

DATE :14Feb89
AUTHOR :Gerald R. Morris

104



DAT4 ELEMENT Data Dictionary.

I
NAME unumber

TYPE DATA ELEMENT
PROJECT :DM Example
DESCRIPTION :This is the user numeric data
DATA TYPE :integer

MIN VALUE
MAX VALUE
RANGE :integer'range
VALUES :
PART OF :userdata
COMPOSITION
ALIASES :
VHERE USED

COMMENT
SOURCES
DESTINATIONS

INPUT:
manage numeric data

REFERENCE:

AFM 35-10 page 3 para. 2.3
REF TYPE:

AFM
VERSION :1.0
VERSION CHANGES

DATE :14Feb89
AUTHOR :Gerald R. Morris

105



Appendix D. Analysis Phase Data Base

The AFIT System Development Guidelines specify the two types of items that helong in an

aialysis phase data dictionary - activities, and data elements (16:8). As seen in the last chapter.

the SAtool output products include an ascii text data dictionary file which can he ituporte, to

the heterogeneous database via Connally's Data Manager (9). The following pages illustrate the

rolations for the analysis phase portion of Connally's heterogeneous database.

106



aalias ahierarchl y
I project c12 1 projec t c2
2 aname c25 2 hianame c25
3 aliasnaine c25 3 loaname c25
4 comment c60

tkup-dirname
activityio L J dir-nane I cloo

I project c12
2 aname c25
3 diname c25 dataitem
4 type c4 1 project c12

2 diname c2.5
3 datatype c25

adesc: 4 low CIO
1 project c12 5 hi CIO
2 aname c25  6 span c60
3 line i2 7 status c I
-1 description c60

diref
ahistory 1 project c12

I project c12 2 diname c25
2 aname c25 3 reference c60
3 version CIO 4 reftype c25
4 date c8
5 author c20
6 comment c60 sadtact

1 datanamne CIS
2 relname c15

divalueset 3 keyl c1.5
1 project c12 4 key2 (1
2 diname c25 5 flddesc c1
1 value c15 6 entryclass c2

7 mlfld cI
8 numflds c3sadtdata 9 direction CIO

I dataname c15 10 type CIO
2 relname c15 11 delflag cI
3 keyl c15 12 version c15
4 key2 c15 13 line i2
3 flddesc c4
6 entryclass c2
7 mlfid cl dialias
8 numflds c3 1 project c12
9 direction CIO 2 diname c25

10 type CIO 3 aliasname c25
11 delflag c1 4 comment c6O
12 version c15 5 whereused c25
13 line i2

107



activity sess-d-tab
I project c12 I session-id c12
2 aname c25 2 project c12
3 number c20 3 parent-val c25
4 status C1 4 levels c2

5 phase c6
6 type c4

diIiistory owner c20
I project c12 toolcode (lL
2 diname c25
3 version CIO
4 (late c8 inonitordata
5 author c20 I time c35
6 comment c60 2 loginname c50

3 action c50

ent-id-table
1 phase c6 entownertab
2 type c3 1 phase c6
3 relname 12 2 type c3
4 kevfld c12 3 relname c12

4 keyfld c12
_ 5_ owner-attr c 12

areference
I project c12
2 aname c25 dihierarchy
3 reference c6O 1 project c12
4 reftype c25 2 hidiname c25

3 lodiname c25

didesc
I project c12 tooldesc-tab
2 diname c25 1 code CIO
3 line i2 2 phase c6
4 description c60 3 type c3

4 parent-rel c12
5 parent-attr -12

par-tel-tab 6 child-attr c12
I toolname cdO 7 def-table c12
2 phase c7 8 description c60
3 type c4
4 levels c2
5 prel)nm c12
6 pkey-attr c12
7 psub-attr c12
8 crel-nm c12
9 ckey-attr c12

10 csub-attr c12

108



Appendix E. Typical Data .1[anager Sessionl

As mentioned in the previous chapter, Connally included a Data MIanager which allows- the

data dictionary files to be uploaded into his heterogeneous database. Here is a typical Data Manrager

so~.'ston:

ssc(l)> dm

DATA MANAGER EXECUTION MENU

1. Build flog transaction file for execution.

2. Use existing transaction file for execution.

3. Exit

ENTER CHOICE: 1

Please enter the transaction file name: jerry

DATA MANAGER

TRANSACTION RECORD MENU

TOOL SELECTION
1. Sun SAD? Editor

2. Data Dictionary Editor

ENTER CHOICE:[1]

DATABASE NAME:(jerry---]

SESSION OWNER NAME:(DATA MANAGER ---

TRANSACTION INDICATOR SELECTION

1. RETRIEVE DATA
2. RETRIEVE DATA FOR UPDATE
3. WRITE NEW DATA

4. WRITE UPDATED DATA

S. DELETE

6. ABORT SESSION

7. EXIT TRANSACTION MENU

ENTER CHOICE:(31

SESSION FILE NAME:Edma-0O---------------------------I

PROJECT: [ON Example-~]

TYPE SELECTION

1. ACTIVITY
2. DATA ITEM

3. BOTH

ENTER CUOICE:(3)

ME( ~



SUCCESSFUL BUILD OF TRANSACTION FILE

TYPE OF EXECUTION

1. Background (Terminal available during execution)

2. Foreground (Terminal unavailable during execution)

3. Exit

Enter Choice: 2

Data Manager now executing

Please be patient, screen may be blank for up to 30 seconds.

Possibly longer for PARENT/LEVEL transactions.

DATA MANAGER TRANSACTION RESULTS

TRANSACTION FILE NAME: jerry.ins

TOOL NAME: SADT
SESSION OWNER: DATA MANAGER

DATABASE NAME: jerry

PHASE: REQ
TYPE: BOTH

PROJECT NAME: DM Example

TYPE OF TRANSACTION: WRITE -- ALL NEW RECORDS

Updates performed using file: dmaO.dbs

ENTITIES LISTED TO BE UPDATED

manage database ACT W

feedback OB W

userdata 08J W

rules OBJ W

RESULTS OF THE UPDATE

manage database ACT V successful update

feedback OBJ W successful update

userdata OBJ W successful update

rules OBJ W successful update

SUCCESSFUL UPDATE

ssc(2)>

110



Appendix F. Example IDEFo Relational Database b,.,1,ucr

The relational database instance shown below corresponds to the diagrams shown in Fi;urt, 7,

:1101 Figure 8. The Pxample was constructed manually using a plain text editor, and( was us' , to

lo the stepwise refinement of the relational design. Note that some of the dam; iII II, ,'xa Nm,,

,ldtahase is in symbolic form, e.g., the locations of the various components. In aldition.

that the IDEF 0 diagrams only show drawing data. For example, the label error (odes" on the .AO

diagram actually corresponds to the data element "'errors" as can be determined via the data2label

'-lation. In short, the essential data below is being shown for the first time.

act2act

parent -node child-node

1 2

1 3

act2data
nodeid data-id icom.type
1 1 I

1 2 C
1 3 0

2 4 I
2 11 I
3 5 I

3 11 I

2 6 C
3 7 C

2 8 0

3 9 0

3 10 M

act2hist

node-id hit-id
3 1

act2ref

node-id ref.if

I I
1 2
2 6
3 7

act _descr

node-id line-no desc-line
1 I This is the context diagram

1 2 for the data manager analysis
2 1 This activity will
2 2 handle numbers
3 1 This activity will

3 2 handle alphanumerics

I11



activity (part 1)
node-id node name projectid author-id
1 £O manage database 1 1
2 Al manage numeric data 1
3 12 manage alpha data 1

activity (part 2)
version date x y visibleDRE sheet-id
1.0 02/14/89 1 1 -1 1
1 0 02/14/89 16 16 0 2
1.0 02/14/89 17 17 0 2

analyst

author-id author

I Gerald R. Morris

arrow

symbol-id arrow.type
2 3
4 1
6 3

10 3

14 3
18 1

22 1
24 3
36 1
41 3
42 3

43 3

boundary
symbol-id icom-code

7 I1
15 C1
23 01

data2data
parent-data child.data
1 4
1 S

2 6
2 7
3 8

3 9

data2label

data-id label-id

I I
2 2
3 3
1 4

4 5
5 6
2 7
6 8
7 9
3 10
8 11

9 12
10 13
11 14

112



data2ref

data.id ref-id

1 3
2 4
3 5
4 8
5 9
6 10
7 11
8 12
9 13

data2value

data-id valuecid
11 1
11 2

data-descr
data-id line-no descline
1 1 This is the user
1 2 input data
2 1 This is the
2 2 database rules
3 1 This is the
3 2 user feedback
4 1 This is the user numeric data
S I The users alphanumeric data
6 1 Rules for numeric data
7 1 Rules for alphanumeric data
8 1 Feedback for numeric data
9 1 Feedback for alphanumeric data

10 1 See Flight Control lode 113

data-elem
data.id name project-id author-id version date
I userdata 1 1 1.0 02/14/89
2 rules 1 1 1.0 02/14/89
3 feedback 1 1 1.0 02/14/89
4 unumber 1 1 1.0 02/14/89
5 ualpha 1 1 1.0 02/14/89
6 numberrules 1 1 1.0 02/14/89
7 alpharules I 1 1.0 02/14/89
8 numbersgs 1 1 1.0 02/14/89
9 alphansgs I 1 1.0 02/14/89

10 alphacall I 1 1.0 02/15/89
11 errors 1 1 1.0 02/17/89

data-type

data-id type

4 integer
5 ascii

11 errcode

data.range
data-id data-range
4 integer range
S ascii'range

data-value

value-id value
1 bad input
2 bad output

113



footnote

graf.id x y

1 90 90

graphics
graf-id sheet-id

1 1
2 1

hist-call
hist-id hist-proj hist-node
1 Flight Control A13

label
label-id name x y sheet-id
I userdata 2 2 1
2 rules 5 5 1
3 feedback 8 8 1
4 userdata 17 17 2
5 unumber 20 20 2
6 ualpha 22 22 2
7 rules 25 25 2
8 numberrules 28 28 2
9 alpharules 30 30 2

10 feedback 34 34 2
11 numbermags 37 37 2
12 alphansgs 41 41 2
13 fctrl/A13 55 55 2
14 error codes 85 85 2

note

graf.id label x y
1 1 11 11

note-text
graf-id line-no text-line
1 1 an example decomposition
1 2 not completed

project
project.id name
1 DR Example

reftype

ref-id ref.typ.
1 military standard
2 std operating procedure

3 military standard
4 military standard
5 military standard
6 contract
7 contract
8 AFM
9 AFN

10 AFN
11 AFN

12 AFM
13 AF

114



reference

ref-id line-no ref-line
1 1 NIL-Std-00091
1 2 page 3 para. 7-5
2 1 System Development Guide
2 2 Draft 4
2 3 chap 2 page 7
3 1 MIL-Std-00091
3 2 page 9 para. 8-1
4 1 NIL-Std-00091
4 2 page 9 para. 8-2
5 1 MIL-Std-00091
S 2 page c para. 8-3
6 1 KIR 100028-89-0123 3.3.2.1.2a
7 1 KIR 100028-89-0123 3 .

3
.2.1.2a

8 1 AFN 35-10 page 3 para. 2.3
9 1 AFM 3S-10 page 3 para. 2.4

10 1 AFN 35-10 page 4 para. 3.2
11 1 AFM 35-10 page 4 para. 3.3
12 1 AFM 35-10 page 5 para. 4.5
13 1 AFM 35-10 page 5 para. 4.6

segment
segid data-id sheet-id xs ys xe ye
1 1 1 3 3 4 4
2 2 1 6 6 7 7
3 3 1 9 9 10 10
4 1 2 18 18 19 19
5 4 2 19 19 21 21
6 5 2 19 19 23 23
7 5 2 23 23 24 24
8 2 2 26 26 27 27
9 6 2 27 27 29 29

10 7 2 27 27 32 32
11 7 2 32 32 33 33
12 3 2 35 35 36 36
13 8 2 38 38 39 39
14 8 2 39 39 40 40
15 8 2 40 40 36 36
16 9 2 42 42 43 43
17 9 2 43 43 36 36
18 10 2 40 40 41 41
19 11 2 75 75 76 76
20 11 2 77 77 78 78
21 11 2 79 79 80 80

sheet
sheet-id cnumber
1 I
2 2

squiggle
graf.id xl yl x2 y2 x3 y3 x4 y4
2 12 12 13 13 14 14 15 15

115



symbol

symbol-id sog.id shee tid x y
2 1 1 4 4
4 2 1 7 7
6 3 1 10 10
7 4 2 18 18

10 S 2 21 21
11 6 2 19 19
13 7 2 23 23
14 7 2 24 24
iS 8 2 26 26
17 8 2 27 27
18 9 2 29 29
21 10 2 32 32
22 11 2 33 33
23 12 2 35 3S
24 12 2 35 35
28 13 2 39 39
30 14 2 40 40
34 16 2 43 43
35 15 2 36 36
36 18 2 40 40
37 19 2 75 75
38 19 2 76 76
39 20 2 77 77
41 21 2 79 79
42 21 2 80 80
43 19 2 76 76

to-from-all

symbol-id tfa-label
38 A
39 A
41 A

tunnel

symbol-id tunnel-type

37 -1

turn
symbol-id turn-type
11 2
13 6
17 2
21 2
28 2
30 6

34 0

35 4

L 16



Appendix G. SQL Scripts

This appendix includes the SQL scripts used to create the relational tahl,,., iurfori a hulk

load, and bulk erase of the relational database. show tile contents of all the rtlatioial anald,. tl

extract drawing and essential data.

C'r-cate Tables

The following SQL script creates the relations for the Ingres relational implementation of the

[DEF database.

CREATE TABLE act2act
parent.node integer4,

child-node integer4);
CREATE TABLE act2data (

node-id integer4,
dataid integer4,
icom-type c);

CREATE TABLE act2hist (
node-id integer4,
hist-id integer4);

CREATE TABLE act2ref (
nodeid integer4,

ref.id integer4);

CREATE TABLE activity (
node.id integer4,

node c20,

name c2S,

project-id integer4,

author-id integer2,
version CIO,

date ca,
x integer2,
y integer2,
visibleDRE integeri,
sheet-id integer4);

CREATE TABLE act-changes (
node-id integer4,
changes c60);

CREATE TABLE act-descr (
node-id integer4,
line-no integer2,
desc-line c60);

CREATE TABLE alias (
data-id integer4,

name c25,

where-used c2S,

coment c25);

117



CREATE TABLE analyst

author..id integer2,
author c20);

CREATE TABLE arrow

syubol-id integer4,
arrow-type integeri);

CREATE TABLE boundary(

symbol-id integer4,
icou..code c2);

CREATE TABLE data2data(

parent-.data integer4,
child-~data integer4);

CREATE TABLE data2label(

data-id integer4,
label-.id integer4);

CREATE TABLE data2ref(
data..id integer4,

ref..id intager4);
CREATE TABLE data2value(

data..id intager4,
value-id integer4);

CREATE TABLE data-.changes(

data..id integer4,
changes c60);

CREATE TABLE data-.descr(
data-id intager4.

line-no integer2.
desc..line c60);

CREATE TABLE data..elea
data-id intager4,
name c25,
project-id integer4,
author..id integer2,
version CIO,
date c8);

CREATE TABLE data..range(
dats..id integer4,
data-.range c60),

CREATE TABLE data-.type(

data..id integer4.
type c25);

CREATE TABLE data-value(

value-id integer4.
value CIS);

CREATE TABLE dot(

symbol-id integer4,
dot..type integeri);

CREATE TABLE foo(

grat..id intoger4,

picture c60);
CREATE TABLE footnote(

graf-id inttger4,

x intager2,
y integer2);

CREATE TABLE graphics
graf..id integor4,
sheet. 14 intoger4);

CREATE TABLE histcall(
hist..id integer4,
hist..proj c12,
hist-node c20);



CREATE TABLE label
label-id integer4,
name CIO,
x integer2,

y integer2,
sheet-.id integer4);

CREATE TABLE min-max(

data-id integer4.
minimum CIS,
maximum cis);

CREATE TABLE not*e
graf-id integer4,

label C1,
x integer2,

7 integer2);
CREATE TABLE note-text

graf-id integer4,
line-.no integer2,

text-line C60);
CREATE TABLE project(

project..id integer4,
name c12);

CREATE TABLE reference(

ref-id integer4.

line-.no integer2,
ref..line c60);

CREATE TABLE ref-type(

ref-id integer4,
ref-.type c2S);

CREATE TABLE segment(
seg-.id integer4.
data..id integer4,
sheet-id integer4
xS integer2,
73 intoger2,
ze integer2,
ye integer2);

CREAT TAL het
sheet-id integer4,
c..number integer4);

CREATE TABLE squiggle(
graf-id integer4,
xl integer2,
yl integer2.
x2 integer2,
y2 integer2,
x3 integer2,
y3 integer2,
x4 integer2.
y4 integer2);

CREATE TABLE symbol(
syubol..id integer4.
saegid integer4,
sheet-id integer4,

x integer2.
I intager2);

CREAT TAL t.from..sll
symbol-id integer4,
tfa..label CI);

CREATE TABLE tunnel(
symbol-id integer4,
tunnel-type integeri);

CREATE TABLE turn(
symbol-id integer4,
turn-.type integeri);

119



['fDatabase

Fhe following SQL script performs a bulk load of the data In the example database into lie

lii,,r~ rolational implementation of tile IDEFO database.

COPY TABLE act2act(parent..node-cO,child-jiode-cO)
FROM "DUA1: fMROTE.GMORRIS .IEWIDEFO]act2act .dat";
COPY TABLE act2data(nodeidcO~data.id-cO, icom-type-cO)
FROM "DUAl: [MROTU .GMORRIS .NEMIDEFO~act2data .dat";
COPY TABLE act2ref(node..id-cO,rf.id-cO)

FROM "DUIl: [MROTI.GMORRIS.NEVIDEFO1act2ref.dat";
COPY TABLE act2hist(nod..jdwcO,hjst..id-cO)

FROM "DUAl: [MROTU OMORRIS .NEVIDEFO~act2hist .dat";
COPY TABLE activity(node.Ad-cO,node-cO,naae-cO~project-id-cO,
author - id-cO,version-cO,datecO, xcO, ycOis ibleDRE-0 shet -id-cO)

FROM "DUAl: [MROTB .GMORRIS .IEVIDEFO~act jyity .dat";
COPY TABLE act..descr(node-id-cO,lne.no-cO .desc..line-cO)

FROM "DU~l: EMROTH.GMORRIS .NEVIDEFO~act-descr.dat";
COPY TABLE analyst (author-id-cO ,author-cO)
FROM "DUIl: (MROTE .GMORRIS.NEVIDEFO) analyst .dat";

COPY TABLE arro.(syubol-id-CO,arro..typ.-cO)
FROM "DUAl:(MROTE.GMORRIS.NEVIDEFO]arrou.dat";

COPY TABLE boundary(syubol..idacO,icou-code-cO)
FROM "DUAl: rMROTH .GMORRIS .NEWIDEFO~boundary .dat";
COPY TABLE data2data(parent.data-cO~child-data-cO)

FROM "DUkl: (MRoTI GNORRS. UEWIDEFO~data2data.dat";

COPY TABLE data2labl(data-i.d-cO,label-i.d-cO)
FROM "DUkl: tMUOTh GHORIS .UEVIDEFO~data2label .dat";
COPY TABLE data2ref(data-id-cO,rfid-cO)

FROM "DUAl (MROTH.GMORRlS. IEVIDEFO~data2ref .dat".
COPY TABLE data2valu(data-.id-cO ,value..jd-cO)
FROM "DUIl: [MROTU .GMORRIS .NEWIDEFO~data2value .dat";
COPY TABLE data-.descr(data..id-cO,line-nocO,desc.ljne-cO)

FROM "DUAl: (MROTH.GMORRIS.NEIDEFO~data-.descr.dat";
COPY TABLE data-.ele(data-iducO~naue-cO,projct.id-cOauthor.id-cO,

version-cO~date-cO) FROM "DUAl: [MROTH.GMORRIS .NEUIDEFO]data..elem.dat";
COPY TABLE data-.type(data..id-cO .typ..cO)
FROM "DU&l: [MROTE.GMORRIS .NEVIDEFO~data-type.dat";
COPY TABLE data-rang(data.id-cO .data..range-cQ)
FROM "DUAl: (MROTN OMORRIS .UKVIDEFO]data.range .dat";
COPY TABLE data-value(walue.iducO. yalu..cO)
FROM "DUAl: (MROTU OMORRIS .IEVIDEFO~data.value .dat";
COPY TABLE footnot*(graf-idcOzucOycO)

FROM "DUAl: [MROTB.GMORRIS. .IIDEFO]footnote .dat";
COPY TABLE graphics(grat..iducO,she.t-iducO)
FROM "DUAl: (MROTB.GMORRIS. .IIDEFOlgraphic. .dat";
COPY TABLE hist..call(hist..id-cO,hist-projucO,hist.nod..cO)

FROM "DUIl: (MROTU.GMORRIS.NKVIDEFOhist.call.dat";
COPY TABLE labol(label..id-cO~naaucOx-cOycO,hoet.iducO)

FROM "DUAl: (MIOTI GOORIS . EVIDEFO]label .dat";
COPY TABLE note(graf-id-cO,label-cO~xucOy-cO)

FROM "DUAl: (MROTU.GNORRIS.EV'IDEFO]note .dat";
COPY TABLE not...tezt(graf-id-cO,lin..no-cOtext..line-cO)
FROM "DUAl: (MIOTUGMORRIS .UEIIDEFO]note-text .dat";
COPY TABLE project (project-id-cO,namte=cO)
FROM "DUAl: (MROTU.GMORRIS.UEWIDEFO]project .dat";
COPY TABLE reforence(r~t..idcOlinenocOreflin..cO)
FROM "DUAl: (MAUTI OMORRIS . EVIDEFO~reference.dat";

120



COPY TABLE ref.type(ref.id=cO,ref.type-cO)

FROM "DUAl:[MROTI.GMORRIS.EEWIDEFO]ref.type.dat";
COPY TABLE segment(seg-id-cO,data-id-cO,sheet-id-cOxs-cOys=cO,xe=cO,ye=cO)

FROM "DUAI:CNROTH.GMORRIS.NEWIDEFO]segment.dat";
COPY TABLE sheet(sheet-id-cO,c.number=cO)

FROM "DUAl:[MROTH.GMORRIS.NEVIDEFO]sheet.dat";
COPY TABLE squiggle(graf-id=cO,xlcO,yl=cO,x2=cO,y2=cO,

x3=cOy3=cOx4=cOy4=cO)

FROM "DUAl: MROTH.GMORRIS.NEVIDEFO]squiggle.dat";
COPY TABLE symbol(symbol-id=cO,seg-id-cO,sheet-id-cO,x=cO,y=cO)
FROM "DUAI: [MROTH. GMORRIS. NEVIDEFO symbol.dac";

COPY TABLE to-frou.all(symbol.id-cO,tfa-label=cO)
FROM "DUAl:[MROTE.GMORRIS.NEVIDEFO]to-fromNall.dat";

COPY TABLE tunnel (symbol.id-cO,tunnel-type-cO)
FROM "DUAI:[MROTH.GORRIS.1EVIDEFO]tunnel.dat";

COPY TABLE turn(symbol.id-cO,turntype-cO)
FROM "DUAI:[MROTH.GMORRIS.NEVIDEFO]turn.dat";

Erase Database

The following SQL script eliminates all the data in the Ingres relational implementation of

the IDEF 0 database.

DELETE FROM act2act;
DELETE FROM act2data;
DELETE FROM act2hist;

DELETE FROM act2ref;
DELETE FROM activity;

DELETE FROM act-changes;

DELETE FROM actdescr;

DELETE FROM alias;
DELETE FROM analyst;

DELETE FROM arrow;
DELETE FROM boundary;

DELETE FROM data2data;

DELETE FROM data2label;
DELETE FROM data2ref;

DELETE FROM data2value;

DELETE FROM data-changes;
DELETE FROM data.descr;
DELETE FROM data.le;

DELETE FROM data-range;

DELETE FROM data.type;
DELETE FROM data-value;

DELETE FROM dot;

DELETE FROM feo;
DELETE FROM footnote;

DELETE FROM graphics;
DELETE FROM hist.call;

DELETE FROM label;
DELETE FROM min-aax;

DELETE FROM note;

DELETE FROM note-text;

DELETE FROM project;

DELETE FROM reference;

121



DELETE FROM ref.typ@;

DELETE FROM segment;
DELETE FROM sheet;

DELETE FROM squiggle;
DELETE FROM symbol;
DELETE FROM to-from-all;

DELETE FROM tunnel;
DELETE FROM turn;

Show Database

The following SQL script shows all the data in the Ingres relatioaal impleiti nitation of the

IDEFo database.

SELECT * FROM act2act;

SELECT * FROM act2data;
SELECT * FROM act2hist;

SELECT * FROM act2ref;

SELECT * FROM activity;
SELECT * FROM act-changes;
SELECT 0 FROM act.descr;

SELECT * FROM alias;

SELECT o FROM analyst;
SELECT * FROM arrow;
SELECT * FROM boundary;
SELECT o FROM data2data;
SELECT e FROM data2label;
SELECT * FROM data2ref;

SELECT * FROM data2value;
SELECT * FROM data.changes;
SELECT * FROM data.descr;

SELECT * FROM data-oles;

SELECT * FROM data-range;
SELECT * FROM data.type;

SELECT * FROM data-value;

SELECT * FROM dot;
SELECT * FROM feo;
SELECT * FROM footnote;

SELECT * FROM graphics;
SELECT * FROM hist.call;

SELECT * FROM label;
SELECT * FROM min-max;
SELECT * FROM note;

SELECT a FROM note.text;
SELECT * FROM project;
SELECT * FROM reference;

SELECT * FROM ref.type;
SELECT * FROM segment;

SELECT * FROM sheet;
SELECT * FROM squiggle;

SELECT * FROM symbol;
SELECT a FROM to-from-all;
SELECT * FROM tunnel;
SELECT * FROM turn;

122



Extract Drawing Data

The following queries extract drawing data from the Ingres DBMS imiplemientation of the

IDEFO database. The first set of queries complete the drawing that was started in Chiapter :'. the

second set of queries extract the data to draw the AO diagram depicted in Figure S-

.4-0 Drawing Data The queries in this section complete the extraction of Irawiing data for

the A-0 diagram depicted in Figure 7, that was started in Chapter 3. Recall the partially comipleted

drawing so far consists of the sheet headers, all boxes, and all line segments.

This set of queries extract all the symbols for the ends of th howi~ l~~iILN ar'

are arrows, turns, tunnels, and to-from-alls. In some instances, e.g., tunnels. there are no0 t iples

extracted because there are none of that type of symbol. Associated with each symbol is its location.,

and a discriminator which indicates the type ,e.g., down arrow =1, or, in the case of to-fromall,

a label.

select syx, 57.7, ar.arrow-type
from symbol sy, arrow ar
where arsymbol-id - sy.symbol-id and

sysheet-jd in (

select &.sheet.id
from project p,activity a
where p.project..id a a.project..id and

anode a "10" and
p.nams w "DR Example");

Ix ly larroel1
I- - - - - - - - - - I
1 41 41 31
1 71 71 11
1 101 101 31
1 - - - - - - - - - - I

select ay. s7.7. tu.turn.type
from symbol sy, turn tu

where tu.symbol..id a sy-symbol-id and
sy.sheet-id in (

select s-shet-id
from project p.activity a
where p.project-id a a.project-id and
anode - "A011 and
p.nam. v "DR Exaimple");

123



AUTHOR: Gerald R Morris DATE lffet-6 IREADERI

PROJECT DM Example REV io JDATE I

NODE, TITLE DM Example NMBER

A- 0

Figure 23. A-0 Diagram (partial drawing 3)

1K ly I turn-.t I

--------------------

select syxz, 57.7, tutuzneltype
from symbol sy, tunnel tu

where tu.syubol..id - sysymbol-id and
sy-sheet..jd in (

select a.sh*et-id
f rom project p,activity a
where p.project-id - a.project..id and

anrode z 11101 and
p name - "DR Example');

Ix ly Itunnell
-- - - - - - - - - -I
--------------------

At this point the drawing tool adds the symbols to the drawing. The u pdat ed palrt ml d ra w 1

that. results from adding these symbols is shown in Figure 23.

124



This next query extracts the tuples corresponding to the labels associated with the data

elemnents (arrows).

select 1.x~l.y,l.name
from label 1
where l.sheet-id in(

select a.sheet..id
from project p~activity a
where p.project-id - a.project-id and
anode - "WO and
p.nane - "DR Example-);

Ix ly Inam. I
I ----------------------- I
1 21 2luserdata I
1 SI 5irules I

1 81 8lfeedback I
----------------------- I

The drawing tool now adds the labels at the specified (x.y) locations resulting III the partial

drawing shown in Figure 24.

These next queries extract the data associated with the other graphical constructs, i.e., squlig-

gles, and footnotes. Note there are two set of ordered pairs associated with the footniote. The first

pair is the location of the label marker, and the second is the location of the actual footniote toxt.

select scxl, syl, s.x2, s.y2, s.x3, s-y3, s.x4, s.y4
from squiggle s, graphics g
where s.graf..id - g.graf-id and
g.sheet..id in (

select a.sheet..id
f rom project p,activity a
where p.project..id a aproject-id and
anode - "AO11 and
pname - "DR Example");

lXI lY1 1x2 1y2 103 1y3 1x4 1y4 I
I------------------------------------------ I
1 121 121 131 131 141 141 151 151
1------------------------------------------I1

125



AUTHOR Gerald R Morris [DATE 14Fel>S,9 IREADERI I I
PROJECT D.M Example IREV 1 0 JDATE I I I

NODE TITLE DMv Example NUMBER 1

A-0 I0

Figure 24. A-0 Diagram (partial drawing 4)

select xmark-n.x, yuark-n.y, nilabel, xtext-f.x, ytext-f.y,

from note n, note-.text nt, footnote f, graphics g
where n.graf..id - g.graf-id and
f.graf..id - g.graf..id and
nt.graf-id - g.graf..id and
g.shest-id in (

select a.shest..id
from project p,activity a
where p.project-id - a.project-.id and
anode - "10" and
p.naua - "DR Example");

lmark lymark Ilabel Ixtext Iytext Iline-nitext-line
I -------------------------------------------------------------------------------------------------
I III 11ii 1 901 901 Ilan example decomposition

I III lift 1 901 901 21not completed

At this point, the drawing tool can add the footnote, and squiggle, which results in the

completed diagram as previously seen in Figure 7.

126



.40 Drawing Data. These next queries illustrate the extraction of the drawing data associted

with the AO diagram. As before, a drawing tool might require tile user to supply the iname of rh,

project being drawn, and perhaps the desired node. Accordingly, the queries ,liown below Iave

'D.N Example" as the project name, and "A" as the desired node.

The first query extracts the data required to begin drawing the AO diagram illustratedt in

Figure 8. As in the previous section, the table immediately following the query contains the tuples

that are extracted as a result of the query.

select a.name, a.date, an.author, a.version, s.cnumber

from activity a, analyst an, sheet a
where a.node a "10" and
a.author-id * an.author.id and

s.sheet-id = a.sheatid and

a.project-id in (
select p.project-id
from project p

where p.name = "DN Example");

Iname Idate Iauthor Iversion Ic-number I

I----------------------------------------------------------------------------- I
Imanage database 102/14/89IGerald R. Morris 11.0 I 11

I----------------------------------------------------------------- I

At this point, the drawing tool can draw the blank sheet, fill in NODE (.AO). NUMBER

(c-number), PROJECT ("DM Example"), TITLE (name), DATE. AUTHOR. and REV (vorsioun)

for the sheet on which the AO node is decomposed. The resulting partial drawing is shown in

Figure 25.

These next queries extract all activity boxes on the AO sheet. A join between activity and

itself via act2act is needed to retrieve the desired tuples. Note the c ,numbers art ,xtracted in 3

separate query since non-decomposed nodes yield no tuples.

127



AUTHOR Gerald R Morris JDATE 14Febt39 [READER

PROJECT DI Example IREV 1 0 JDATE. I

NODE TITLE manage database NUMBER. 2

AO II

Figure 25. AO Diagram (partial drawing 1)

select aflame, ax, a.y, &.node
from activity a, act2act a2a
where a.node..id - a2a.chld.rode and
a2a.parent..nods in(
select a.node..id
from activity a
where anode - 'AO1 and
aproject.id in (
select p.project-id
from project p
where P.naue - "MR Example"));

mnama Ix ly Inode,
I ------------------------------------------------------ I
manage alpha data 1 161 16112
manage numeric data 1 171 1711
------------------------------------------------------- I

128



select axz. a.y, a-c..number
from activity a, act2act a2a, sheet 9
where a.aode..jd - a2a.chjld..nods and
a.node..id -* .node-id and
avisible-DRE - -1 and
a2a.pareat..node in

select a.node..id
from activity a
where a-node xAO" and
aproject-id in (
select p.project-id
from project p
where p.naue - "DR Example"));

Ix 17 I c-.number I
I ------------------------ I
I ------------------------ I

Now the drawing tool can draw all the boxes at the given (x,y) locations, enter the nanlies

and node numbers into the boxes, and enter the c-number to the lower riih of each activ~itv box

that has been decomposed (none in this particular case). The partial drawing resulting from this

is shown in Figure 26.

The next query extracts all the line segments on this sheet. These line segments correspond

to the data elements. As always, the (x,y) pairs are only symbolic in this simple example database.

A --real" database would have a screen location represented in (x,y).

select se.a, sa.ys. sexo, seye
from segment so
where se.sheet-id in
select s.sheet-id
from activity a, sheet s, act2act a2a
where a.sheet-id as-shost..id and
a.node-id a a2a.child..node and
a2a.parent-node in
select a.node..id
from activity a
where &.nod* - "10" and
a.project..id in (
select p.project.id
from project p
where p.namo - "DR Example")));

129



AUTHOR. Gerald R Morrns AATE 64Fb41READERI
PROJECT DM Example IREV 1 0 ]DA'E I

Inumerci

NODE TITLE manage database MFIIE 2
AO 1

Figure 26. AO Diagram (partial drawing 2)

-------------------------- I
181 181 191 191
191 191 211 211
191 191 231 231
231 231 241 241
261 261 271 271
271 271 291 291
271 271 321 321
321 321 331 331
351 351 361 361
381 381 391 391
391 391 401 401
401 401 361 361
401 401 411 411
421 421 431 431
431 431 361 361
751 751 761 761
771 771 781 781
791 791 801 801

--------------------------

130



AUTHOR Gerald R Morris (DATE 1 -1Ft-bw (READER
PROJECT DMI Example IREV 1 0 DATE I

NODE ITLE anagedatabse NUBER

AO IT

Figure 27. AO Diagram (partial drawing 3)

Now the drawing tool can draw all the line segments at the given (X,y) locations. The parrial

hrawing resulting from this is shown in Figure 27.

These next queries retrieve the tuples representing all the symbols at the ends of the line

segments. The queries include retrieval of dots, arrows, turns, tutinels. to-fronkalls, and honnd-

,-rips (ICOM codes), As mentioned earlier, each symbol has an (x,y) location, and ome typ, of

dliscriminator or label.

1.31



select sy. 57.7, do.dot..type
from symbol my, dot do
where do.symbol.id - sy.symbol-id and
sy sheet-id in (
select s.shest..id
from activity a, shoot s, act2act a2a
where a.sheet-id - s-sheat..id and
anodejid - a2a.child.node and
a2a.parent..node in(

select a.node..jd
from activity a
where &.node - "10" and
a.project-id in (

select p.project..id
from project p
where puamue a "DN Example")));

It ly Idot..tyl

I - - - - - - - - - - I
I --------------------I

select syx, 57.7, ar.arrow..type
from symbol sy, arrow ar
where ar.symbol-.id - sy.symbol..id and
sy-sheet..id in (
select 5.sheet-id
f rom activity A, sheet a, act2act a2a
where a.sheet..id - s.shoet..id and

a.node..id - a2&.child-nods and
a2a.parent.node in
select a.node..id
from activity a
where anode - "AO" and
a.project-id in (
select p.project..id
from project p
where p.naae - "DR Example-)));

It iy larrow.)
I -------------------- I
1 211 211 31
I 241 241 31
1 291 291 11
I 331 331 11

1 351 351 31
I 401 401 1I

1 781 781 31
1 801 801 31
1 761 761 31
-------------------- I

132



select sy.x, sy.y, tu.turn-type

from symbol sy, turn tu
where tu.symbol-id = sy.symbol-id and
sy.sheet-id in (
select s.sheet-id
from activity a, sheet a, act2act a2a
where a.sheetid = s.sheet-id and
a.node-id = a2a.child-node and
a2a.parent-node in (
select a.node-id
from activity a
where a.node = 10" and
a.project.id in (

select p.project-id

from project p
where p.name = "DR Example")));

Ix ly Iturn-ti
I -------------------- I
1 191 191 21

231 231 61
271 271 21

321 321 21

1 361 361 41
1 391 391 21
1 401 401 61
1 431 431 01

select sy.x, sy.y, tu.tunnel.type
from symbol sy, tunnel tu
where tu.symbol-id - sysymbol-id and
sy.sheet.id in (
select s.sheet-id
from activity a, sheet a, act2act a2a
where a.sheet-id a s.sheet.id and
a.node-id = a2a.child-node and
a2a.parent-node in

select a.nodeid
from activity a
where a.node a "to and

a.project.id in (
select p.project-id
from project p
where p.name a "DR Example")));

Ix ly Itunnell

I -------------------- I
I 751 7S1 -11

I -------------------- I

133



select sy.x, sy.y, tfa.tfalabel

from symbol cy, tofrom.all tfa
where tfa.symbol-id = sy.symbol-id and
sy.sheet-id in (

select s.sheet.id

from activity a, sheet s, act2act a2a
where a.sheet.id = s.sheet-id and

a.node-id = a2a.child-.nod. and
a2a.parent-node in (

select a.nodeoid

from activity a
where a.node - "AO" and

a.project.id in (

select p.project-id
from project p

where p.naae = "DR Example")));

Ix ly Ilabel I

I --------------------I
1 761 761A 1
I 771 7711 1
1 791 791A I

I --------------------I

select sy.x, sy.y, bo.ico.code
from symbol sy, boundary bo
where bo.symbolid = sy.symbol.id and
sy.sheet-id in (

select s.sheet-id

from activity a, sheet s, act2act a2a
where a.sheet.id = s.sheet-id and
a.node.id - a2a.child.node and

a2a.parent-node in (

select a.node-id
from activity a

where a.node = "AO" and
a.project.id in (

select p.project.id
from project p

where p.name - "DR Example")));

Ix ly lico.cl

I ------------------- I
I 181 18111 I

I 261 261CI I
S 351 3Sot I
-------------------- I

Now the drawing tool can draw all the symbols for each of the line segments at the givoii

(x.) locations. The partial drawing resulting from this is shown in Figure 28.

This next query extracts all the labels for each of the arrows on the diagram, Associated with

each label is the (x,y) location where the label is to be drawn.

134



AUTHOR: Gerald R. Morris DATE 14Feb839 IREADERI
PROJECT. DM Example IREV 1 0 JDATE I

NODE. TITLE: manage tbs UBR

selectlx, managen

from labela

Figere 28.et.j in Diga(prildaig4

select s.sheet-id
from activity a, sheet s, act2act a2a
where a.sheet..id - a.shet-id and
a2a.chld-.nods = a.node..id and
a2a.parent.nods in(

select a.node..id
from activity a
whtere anode - "A01" and
a.project-.id in (
select p.project.id
from project p
where p.name a "DR Example-M);

135



Ix , Iname

1 171 17Iuserdata I
1 201 20l1unumber I

I 221 22hzslpha I
1 251 2SIrules I

I 281 28lnunber~uleI
1 301 30lalpharlo'si
I 341 34lfeedback I
1 371 37lntumberusgsl

1 411 411 alphamsgs I
I SSI SSlfctrl/A13 I
I 851 BSlerror codel
----------------------- I

Now the drawing tool can enter all the labels for each of the data elements at the given (x.y)

locations. The drawing resulting -from this is actually the same as the complete diawing -liowii III

Figure 8.

These next queries extract the additional graphics entities on the draingki. III (I~I, particular

instance, there are no additional graphics entities, i.e. squiggles, and footnotes.

select sau, syl, s.x2, s.y2, s~x3, s.y3, s.x4, s.y4
from squiggle a. graphics g
where segra~fid - g.graf..id and
gshost-id in (

select s.shest-id
f rom activity a, sheet s, act2act a2a
where a.node-id - a2a.child-node and
a.shoet-id - s.sheet-id and
a2a.parent..nod* in
select a.node-id
from activity a
where anode - "A011 and
a.project-.id in (
select p.project..id
from project p
where p.name a DR Example")))

lX1 lyl 1x2 1y2 Ix3 1y3 Ix4 1y4 I
-----------------------------------------------------I
-----------------------------------------------------I

136



select xmark-m.x, yuarkan.y, n.label, xtext=f.x, ytext-f.y,
nt.linono, nt.tezt_line

from note n, note-text nt, footnote f, graphics g

where n.graf.id - g.graf-id and

f.graf-id = g.graf-id and
nt.graf.id a g.graf.id and

g sheet-id in (

select s.sheetid

from activity a, sheet a, act2act a2a
where a.node-id - a2a.child-node and

a.sheet.id a s.sheet-id and
a2a.parent.node in (

select a.nodeid
from activity a

where a.node - "10" and

a.project-id in (
select p.project.id

from project p
where p.name = "DM Example")));

Ixmark lymark Ilabel Ixtext lytext Iline-nltextline

I -----------------------------------------------------------------------------------------------I

I -----------------------------------------------------------------------------------------------------F

Extract Essential Data

The following queries extract essential data from the Ingres DBMS implementation of the

IDEFO database. The first set of queries extract the data for a typical activity data dictionaiy

The second set of queries extract the data for a typical data element data dictionary. As with the

drawing data above, these queries are associated with the diagram showii in Vi',u,_ S.

Activity Data Dictionary. These next queries illustrate the extraction of the data dictionary

data (essential data) associated with a typical activity (Al in the example).

SELECT a.name,a.nodea.version,a.datean.author

FROM activity a,analyst an,project p

WHERE an.author-id - a.author-id and

a.project.id w p.projectid and
a node - "Al" and

p-name - "OR Example";

Iname [node Iversion [date iauthor I

I -------------------------------------------------------------------------------------I

Imanage numeric data IAl 11.0 102/14/89IGerald R. Morris I

I ----------------------------------------------------------------------------------- I

137



SELECT c.changes IC Got the changes S
FROM act ivity a,act..changes c,project p
WHERE c.nods..id a a.nodejid and
a-project-.id - p.project-id and
a-node - "Al" and
p.name - ONR Example";

I changes
I ------------------------------------------------

I ---------------------------------------------------------I

SELECT ad.lirte.no,ad.desc-line /* Get the description*e/
FROM activity a,project p,act..descr ad
WHERE a.node..id a ad~node-id and
a.project-id - p.project-.id and
anode - "A&V and
p.name -"ON Example";

Iline-nldesc-jline

I----------------------------------------------------
I liThis activity will

I 2lhandle numbers
I----------------------------------------------------------------

SELECT parent-a.name /0 Get the parent activity .
FROM activity a~project p,act2act a2a
WHERE a-node-id a a2a.parent..node and
a2a.child-.node in (

SELECT a.nod*-id

FROM activity a,project p
WHERE a.project-id - p.project.id and
anode - "All, and
p-name - "ON Example");

I parent
I ------------------------
manage databaseI

I ------------------------

SELECT d.namo~a2d.icom.type /0 Get the data elements S
FROM activity a,data..elem d,act2data a2d,project p
WHERE a.node-id - a2d.nods-id and
d.data-id a a2d.data-.id and
a.project..id = p.project.id and
anode - "Al" and
p.nams - "ON Example";

name Iicom.tI

I ------------------------------- I
lunumber 1I I
Intumberrules IC I
Inumbermsgs 10 I
errors 11 1
I - - - - - - - - - - - -------- 1

138



SELECT rt.ref-type,r.ref-line,r.lineno /* Get the references '/
FROM activity a,project p,ref-type rt,reference r,act2ref a2r
WHERE a.node-id = a2r.node-id and

r.ref-id = a2r.ref-id and
r.ref-id = rt.ref.id and
a.project.id = p.project.id and

a.node = "Al" and
p.name - "OM Example";

I ref-type Iref-line Iline-nI

I ----------------------------------------------------------------------------------------- I
Icontract IKiR 100028-89-0123 3.3.2.1.2a I I1
------------------------------------------------------------------------------------------ I

Data Element Data Dzctzonary. These next queries illustrate the extraction of the ldar;i

tionary data (essential data) associated with a typical data element (unnmbe, in the ,exanlI,.)

SELECT d.name,an.authord.version,d.date

FROM data-eles d,analyst anproject p
WHERE d.name="unumber' and

d. author.idwan. author.id and
d.project.id=p.project_.id and
p.name'"DM Example";

Iname lauthor Iversion Idate I
I ----------------------------------------------------------------- I
lunumber IGerald R. Morris 11.0 102/14/891

I --------------------------------------------------------------I

SELECT dd.line-.no,dd.desc.line / description 0/

FROM data.descr dd,data-elem d,project p
WHERE d.name ="unumber" and
dd.data-id = d.dataid and
p project-id-d.projectid;

Ilinenldesciline I

I ------------------------------------------------------------------- I
I lIThis is the user numeric data
I -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

SELECT c.changes /* changes 0/

FROM data-changes c,dataelem d,project p
WHERE c.data.id-d.data-id and

d name-"unumber" and

p.project.id - d.project-id;

I changes I
I -------------------------------------------------------- I
I ----------------------------------------------------------- I

SELECT a.name,a.whereused,a.coment /* aliases */
FROM alias a,data.elem d,project p
WHERE a.data.id-d.data-id and

d name."unumber" and
p project.id a d.project.id;

Iname Iuhere-used Icoment

I-------------------------------------------------------------------------- I
I--------------------------------------------------------------------------I1

139



SELECT parentud.name I. parents *
FROM data~sle. d,data2data d2d
WHERE d.data..id-d2dparent-.data and
d2d.child.data in (

SELECT d.data-id

FROM data-elem d~project p
WHERE d.name-unumber" and

d.project-id=p.project-id and
p.name - "DR Example-);

I parentI
I ---------------------- I
I userdataI
I-------------------------- I

SELECT chjldren-d.name /o children .
FROM data-.elem d,data2data d2d,project p
WHERE d.data-id-d2d.child-data and

d2d parent-data in(
SELECT d.data..id

FROM data-.elan d,project p
WHERE d nane.'unumber" and
d.project-id-p.project-id and

p.name -"DR Example");

I childrenI

SELECT dt~type /e data type o/
FROM data-.type dt,data..elen d~project p
WHERE dt.data.id-d.data.id and

d. namew'unumber" and
p .project-id-d.projectjid;

I typeI

I ------------------------ I
I integer

I ------------------------

SELECT dr.data..range /e data range S
FROM data-rang* dr,data..elon d,project p
WHERE dr.data-id-d.data-id and
d. name."wunmber" and
p. project-.id-d.project..id;

I data-range

integer 'range

I ---------------------------------------------------------I

SELECT m miniu,m maximum /e get min/max .
FROM min-max m.data..ele. d,project p
WHERE m.data..id-d.data-id and
d. name-" unumber " and
p. project-idd.projectid

Iminimum Imaximum

I--------------------------------I
I- - - - - - - - - - - - - - -- I

1.10



SELECT v.value /0 data values 0/

FROM data.value vdata2value d2v,data-elem d,project p

WHERE v.value-idud2v.value-id and

d2v.data_id-d.data_id and

d. name='unumber" and
p.project-.id-d.project.id;

Ivalue I

I -------------- I

I I

SELECT a.namo.a2d.icom-type /0 sources and destinations */
FROM activity a,data.elem d,act2data a2d,project p

WHERE d,data-id-a2d.data-id and

a.node-id-a2d.node-id and

d. name-"unmber" and

p.project-id-d.project-id;

Iname licomtI

I ------------------------------- I

Imanage numeric data II
I ---------------------------------

SELECT rt.ref.typer.line-no,r.ref_line /* get references */

FROM dataeles dref.type rt,reference r,project p,data2ref d2r
WHERE rt.refid-r.ref-id and

r.refidud2r.ref-id and
d2r.data-id-d.data,id and

d.name"lunumber" and

p.project-id-d.project-id;

Ireftype Ilinenlref-line

I ----------------------------------------------------------------------------------------- I

fAFM I IIAFM 3S-10, page 3, para. 2.3

-------------------------------------------------------------------------------------

141



Appendix H. Example IDEFo Nested-Relationa' Data ba.;e i/ta nce

The example nested-relational database shown below corresponds to the diagranis shown in

Figure 7, and Figure 8. The example was constructed manually using the relational implementation

as a starting point. Note that some of the data in the example database is in symbolic form. eg..

the locations of the various components, the arrow-types, etc.

The nested-relational database instance below includes the names of the rIelational-% ,2l

attributes in parenthesis to make things easier to understand. In addition . i ,ile is sp1lit ilI,)

three sections, activities, data elements, and sheets.

project

Iproject-name I
I ------------- I
IDN Example I
I ------------- I
(act ivit ies)

Inode-id [node Iname [author [version Idate Ichanges Ic-number 1parent
I -------- I - I ------------------- I ---------------- I -------- I --------- I ----------- I --------- I---------------I
I1 110 Imanage database Ioerald R. Morris 11.0 102/14/89 1 11 1
I -------- I --- I ------------------- I ---------------- I -------- I --------- I----------- --------- I--------------
(act-descr)

lline-no Idescr-line I
I -------- I ------------------------------ I
I1 IThis is the context diagram I
12 Ifor the data manager analysis I
I -------- I -------------------------------I

(refrences)
Ireftype I
I ----------------------- I
lmilitary standard I
I ---------------------- I
(ref-lines)

Iline.no Iref-line I
I -------- I ------------------------------ I
I1 IMIL-Std-00091 1
12 Ipage 3 para. 7-S 1
I -------- I ------------------------------ I

I ---------------------- I
Istd operating procedure I
I ----------------------- I
I -------- I ------------------------------- I
1I System Development Guide 1
12 IDraft 4 1
I -------- I ------------------------------ I

(hist.calls)
Ihist.proj Ihist-nods I
I ------------ I ---------- I
I --- -I ----------

142



(data-elema)
Idata..name Iicom..type I
I ------- I---- I
luserdata 1I I
rules 1C I
feedback 10 1
I --------- I---- I

(children)
Inode..nams I

manage numeric data I
manage alpha data I

Inode-id Inode Iname lauthor [version Idate Ichanges Ic-nweber 1parentI
----- I --- I--------------------I -----------------I -------- I--------- I----------- I--------- I--------------

12 IA1 Imanage numeric data IGerald Rt. Morris 11.0 112/14/89 1 12 Imanage database I
I -------- I----- -------------------- I-----------------I--------I--------- I----------- I--------- I----------------I
(act..descr)

Iline..no Idescr-.lineI
I -------- I ------------------------------- I
it IThis activity will1
12 Ihandle numbers.
I -------- I ------------------------------- I

(refrences)
Iref-type I
I ----------------------- I
contract I
I ----------------------- I
(ref-line.)

Iline..no Iref-lineI
I -------- I ------------------------------- I
It IKUR 100028-89-0123 3.3.2.1.2a 1
1 -------- I -------------------------------I

(hist-calls)
Ihist-.proj Ihist..node I
I ------------ I----------
I ------------ I---------- I

(dat aelems)
Idata-.name Iicom..typ. I
I-----------------I --------- I
lurnunber 11
errors II 1
Inumberrule. IC I
fnumbermags 10 1

----------I ---------- I
(children)

Inode.name, I
I --------------------I
I --------------------I

Inode..id [node Iname lauthor Iversion Idate Ichanges 1c-number 1parent
----- I --- I-------------------I -----------------I -------- I--------- I----------- I--------- I----------------

13 1*2 Imanage alpha data IGerald Rt. Morris 11.0 112/14/89 1 12 Imanage databaseI

I -------- I --- I-------------------I -----------------I -------- I--------- I----------- I--------- I---------------
(act-doscr)
I line-no Idescr..lineI
I -------- I -------------------------------I
11 IThis activity sill
12 Ihandle alphanumerics
I------------------------------------

143



(ref rence.)
ref .typ* I

contractI

(ref-lines)
I line-no I ref-line

IIT KU 00028-89-0123 3.3.2.1.2a I

(hjst..call.)
Ihist..proj Ihist..node I

---------I ---------- I
Flight Control [113 I

---------I ---------- I
(data-slams)

Idatajia.. Iicon-type I

I -------- I ---------- I
Inaipha Ii I
errors Ii I
laipharules IC I
Ialphawsgs 10 1
Ilphacall IN I
I -----------------I ---------- I

(children)
I nodo-nam I
I --------------------I
-------------------

144



(data..elements)
ldata..id Iname lauthor Iversion Idate Ichanges !parent

----- I ----------- I-----------------I -------- I--------- I-------- I---------
1 luserdata IGerald Rt. Morris 11.0 102/14/89 1I
I -------- I----------- I-----------------I -------- I--------- I-------- I---------
C dat a.descr)

Iline..no Idescr..lineI
----- I ------------------------------ I

11 IThis is the user
12 linput data

----- I -------------------------------
(refrences)

Iref..typo I
I -----------------------
military standard I
I -----------------------
(ref-.lines)
I line-.no I ref-lins
I -------- I ------------------------------- I
It IMIL-Std-00091
12 Ipage 9 para. 8-1

----- I -------------------------------
(aliases)

Inane Iuhere-used I comment I
----------------I ------------

I--------------------I ------------
(min-max)

Idata..type Ininimum Imaximum I
I ---------- I------------I ------------
I ---------- I------------I ----------- I

(range)
Idata..type Irange I
I ---------- I---------------I
I ---------- I---------------I

(values)
[data-.type Ivalue I
I ---------- I---------------I

------ I ---------------
(activitees)

Inode..name Iicon..type I
I - - - -------- I---------- I
manage, database Ii I
I ---------------------I ---------- I

(children)
I data.nsm I

I unumberI
I uaiphaI
I -------------------I

Idata.id Inane lauthor Iversion Idate Ichanges Iparent
I -------- I----------- I-----------------I -------- I--------- I-------- I---------I
12 Irules IGerald Rt. Morris 11.0 102/14/89 1I
1-------- I----------- I-----------------I -------- I--------- I-------- I---------I
(data-descr)
I line-no Idescr-line
--------I ------------------------------- I
It IThis is the
12 Idatabase rules
I-----------------------------------



(refrences)
Iref..type I
I ------------I
military standard I

I --- - - - - - - - - - -
(ref-.lines)

Iline-no Iref-lineI
I -------- I ------------------------------- I
11 INIL-Std-00091
12 Ipage 9 para. 8-2
1--------I ------------------------------- I

(aliases)
I name Iuhere-used Icomment I

I--------------------I ------------
I--------------------I ------------

(min-max)
Idata..type Iminimu Imaxium I
I ---------- I------------I ----------- I
I ---------- I------------I ----------- I

(range)
Idata..type Irange I
I ---------- I---------------I

------ I ---------------
(values)

Idata..type Ivalue I
---------- I---------------

------I ---------------
(activitees)

Inod*-name Iicom..type I
I --------------------- I ---------- I
manage database IC I
I- - - - - - - - - - -I----------

(children)
Idata-namse
I - - - - - - - - - -I
Inumberrules I
lalpharules I
I - - - - - - - - - -I

Idata..id Iname lauthor Iversion Idate Ichanges Iparent
I -------- I----------I ----------------- I -------- I--------- I-------- I---------I
13 Ifeedback IGerald ft. Morris 11.0 102/14/89 1I
1 -------- I----------- I-----------------I -------- I--------- I-------- I---------I
(data-descr)

lline-.no Idescr..line
I -------- I ------------------------------- I
It IThis is the
2 luser feedback
I-------- I-----------------------------I

(retrences)
Iref..typo I
I - - - - - - - - - - - - I
Imilitazy standard I
I --------------------- I
(ref..lines)

Iline.no Iref-line
I-------- I-----------------------------I
it IMIL-Std-00091
12 Ipage 9 pars. 8-3
1 ------- I-----------------------------I

(aliases)
I name Ivbere..used Icoment I

I---------------- ------------ I
I---------------- ------------ 1

1-46



(min-.max)
Idata..type Iminimium Imaximum I
I ------ I ----- I -----
I---- I ----- I-----

(range)
Idata-type Irang.
I---- I ---------
I -- - - - - I - - - - - - -- I

(values)
Idata-type [valueI
I ------ I ---------

I ----- I ---------
(act jyit ess)

lnode..nams Iicom..type I
I--------I - I -----
manage database 10 1
I----- I----I -----

(children)
Idata..naze I
I ----------
Inumbermags
lalphamsgs I
I -------------------I

Idata-id Inane lauthor Iversion Idate Ichanges Iparent I
I -------- I-----------I ------------------------ I--------- I-------- I---------I1
14 1lunumber lGerald Rt. Morris 11.0 102/14/89 1 luserdata I
I -------- I----------- I-----------------I -------- I--------- I-------- I--------I
(data-.descr)

Iline..no Idescr..lineI
I -------- I ------------------------------- I
Ii IThis is the user numeric data I
I -------- I ------------------------------- I

(refrences)
Iref-typs I
I - - - - - - - - - - - -I
JI FM
I -----------------------
(ref..lines)
I line..no I ref-.line
I -------- I ------------------------------- I
11 IAkFM 35-10 page 3 para. 2.3 1
1I--------I ------------------------------- I

(aliases)
Inane Ivhere..used I comment I

----------------I ------------
I--------------------I ------------

(min-max)
Idata..type Iminimum Imaximum
I ---------- I------------I ----------- I

------ I ------------ I ----------- I
(range)

Idata-type Irange I
I ---------- I---------------I
integer lintegerrange I
I ---------- I---------------I

(values)
Idata-type Ivalue I
I ---------- I---------------I
I ---------- I---------------I

(act iuitees)
Inode..naae Iicon-type I
I ---------------------I ---------- I
manage numeric data 11 1
I ---------------------I ---------- I

147



(children)
Idat a.name
-- ----------
-- - - -- - - --

Idata..id mazme lauthor Iversion Idate Ichanges Iparent I
I -------- I----------- I-----------------I -------- I--------- I-------- I--------- I
Is Iualpha IGerald Rt. Morris 11.0 102/14/89 1 luserdataI
I -------- I-----------I -----------------I -------- I--------- I-------- I--------- I
(data..descr)

I line..no Idescr..lineI
I---- I ------------------------------- I
11 IThe users alphanumeric data I
I -------- I ------------------------------- I

(refrences)
Iref..type I
I ----------------------- I
IAFIR
I- - - - - - - - - - I
(ref-.1mg.)
I line-no I ref-line
I -------- I ------------------------------- I
it IAFM 35-10 page 3 para. 2.4
1--------I -------------------------------I

(aliases)
Inane Iuhere-used Icoment I

I--------------------I ------------
I--------------------I ------------

(main-.max)
Idata..type Ininimum Imaximum I
I ---------- I------------I ----------- I
I ---------- I------------I ----------- I

(range)
Idata..type IrangeI

------ I ---------------
Iascii Iascii'range I
I ---------- I---------------

(values)
Idata..type IvalueI
I ---------- I---------------
I ---------- I---------------

(activitees)
Inod...name liconutype I
I ---------------------I ---------- I
manage alpha data 11 1
I ---------------------I ----------I

(children)
Idata-usam I
I -------------------
I -------------------

data..id Iname lauthor Iversion Idate Ichanges ]parent I
I -------- I-----------I -----------------I -------- I--------- I-------- I---------I1
16 InuiberruleslGerald Rt. Morris It.0 102/14/89 1 Irules I
I -------- I-----------I -----------------I -------- I--------- I-------- I--------- I
(data-descr)

I line-no I descr-line
-------- I ------------------------------- I
11 Mfules for numeric data

------------------------------------

148



(refrences)
Iref-typeI
I ------------I
I AFMI

I -- ---- ---- ---- ---- - I
(ref..lines)

Iline.no Iref..lineI
I -- - - - I -- - - - - - - - - - - - - - - - I
11 IAFM 35-10 page 4 para. 3.2
1 -------- I------------------------------

(alias.s)
Iname Iwher...used Icomment I

------------------ I ---------- I
I-----------------I ---------- I

(mint-max)
Idata..type Imininum Imaximum I
I ---------- I------------I ------
I ---------- I------------I ------------

(range)
Idata.type IrangeI
I---------- I-------------I
I ---------- I---------------

(values)
Idata..type [value I

------ I ---------------
I ---------- I---------------

(activit...)
Inode-.naue licom type I
I-------------------- I---------- I
manage numeric data IC I
I- - - - - - - - - - -I----------I

(children)
Idata-.name I
I -------------------
I -------------------I

Idata-id Iname lauthor Iversion [date Ichanges Iparent
I --------I ---------- I----------------- I-------- I--------- I-------- I---------I
17 Ialpharules IGerald Rt. Morris 11.0 102/14/89 1 Irules

----- I -----------I -----------------I -------- I--------- I-------- I---------
(data..descr)
I line..no Idescr-.line
I --------I ------------------------------- I
it IRule. for alphanumeric data I
I --------I ------------------------------- I

(refrences)
Iref..type I
I ----------------------- I
I AFM
I ----------------------- I
(ref .lines)

Iline..no lref..line
I --------I ------------------------------- I
it IAFN 35-10 page 4 para. 3.3
1--------I -------------------------------I

(aliases)
Inane luhere-used Icoment I

I--------------------I ---------- I
--------------I ---------- I

(min-.max)
Idata-type mninimum Imaximum I
I ---------- I------------I ----------- I
I --------- I ------------ I -----------I

149



(range)
ldata.type IrangeI
I---- I - ---- I
I ------ I ---------

(values)
Idata-typs lyalue I
I -- - - - - I - - - - - - -- I
I -- - - - - I - - - - - - -- I

(activitees)
[node-.name Iicon..typt
I --------------------- -------- I
manage alpha data ICI
I ---------------------I ---------- I

(children)
Idata-name I
I -- - - - - - - - -
I -------------------

data.Ad Inane lauthor Iversion Idate Ichanges Iparent I
----- I ----------- I-----------------I -------- I--------- I-------- I---------I

18 Inumbermags IGerald R. Morris 11.0 102/14/89 I Ifeedback I
I -------- I----------- I-----------------I -------- I--------- I-------- I--------- I
(data..descr)

Iline-no Idescr..lineI
I -------- I -------------------------------I
11 IFeedback for numeric data I
I -------- I ------------------------------- I

(refrences)
Iref-typeI
I ----------------------- I
I AFM
I ----------------------- I
(ref..lines)
I line..no I ref-.lineI
I -------- I ------------------------------- I
11 IAFM 35-10 page 5 pars. 4.5
1I--------I -------------------------------I

(aliases)
nane Iehere-used Icomment I

I--------------------I ----------- I
----------------I ------------

(min-muat)
Idata..typ. Iminimum Imaximum I
I ---------- I------------- I------------
I ---------- I------------I ------------

(range)
Idata..type IrangeI
---------- I---------------

------I ---------------I
(values)
ldata-typs vwalue I

------ I ---------------
I ---------- I---------------

(act ivitess)
Inode.-name Iicon-type I
I ---------------------I ---------- I
manage numeric data 10 1
I ---------------------I ---------- I

(children)
Idats..naae I
I------------------ I
I -------------------I

Idata..id Inane lauthor Iversion Idate Ichanges Iparent I
I ------- I---------I -------------- I ------- I -------- I ------- I -------- I1
9 Ialphamsgs Gesrald Rt. Morris 11,0 102/14/89 1 Ifeedback I
I---------------- I-----------------I -------- I--------- I-------- I---------I

1.50



(data..descr)
I line..no Ideacrjline,

11 lFeedback for alphanumeric dataI
I -------- I ------------------------------- I
(refrences)
Iret-type I
I ----------------------- I
I AF!
I ----------------------- I
(ref..lines)
I line-no I roflins
I -------- I ------------------------------- I
11 IAFM 35-10 page 5 para. 4.6
1--------I -------------------------------I

(aliases)
name Ivhere-uaed, comment I

I--------------------I ------------
I--------------------I ------------

(min-max)
Idata..type Iminimum Imaximum I
I ---------- I------------I ----------- I
I ---------- I------------I ----------- I

(range)
Idata..type Irange I
I ---------- I---------------I
I ---------- I---------------I

(values)
Idata..type Ivalue I
I ---------- I---------------I
I ---------- I---------------I

(actiwitees)
Inode..naie, Iicom..type I
I ---------------------I ---------- I
manage alpha data 10 1
I ---------------------I ---------- I

(children)
Idata-.name I
I -------------------I

Idataid Inane lauthor Iversion Idate Ichanges 1parent
----- I ----------- I-----------------I -------- I--------- I-------- I---------I

Ito Ialphacall IGerald Rt. Morris 11.0 102/15/89 I
-------- I----------- I-----------------I -------- I--------- I-------- I---------I
(data-descr)
I line-no Ideacr.line
I---- -------------------------------- I
II 15cc Flight Control lode £13
1--- 1---------------------------------
(refrenc cc)

ref-type I
1----------------------
I ---------------------- I
(ref-.lines)

Ilinesno Iref-line
I-----------------------------------I
I-----------------------------------I

(aliases)
name Ishere-used Icomment I

I--------------------I ------------
I--------------------I ------------

(min-max)
Idata..type Iminimum Imaximum I
------- ------------- ------------ I
---------- I-----------------------I

151



(range)
Idata-type IrangeI
---- -I - -- ------
-- -- -- - I --- - - - - -I

(values)
Idata-type Ivalue I
I ---------- I---------------
I ---------- I---------------

(activitees)
Inode-name Iicom-type I
I ---------------------I ---------- I
manage alpha data IM I
I - - - - - - - - - - I ---------- I

(children)
Idata..name I
I -------------------I
I -------------------I

idatapid Inain. author Iversion Idate Ichanges Iparent
I -------- I----------- I-----------------I -------- I--------- I-------- I---------
ill lerrors IGerald R. Morris 11.0 102/17/89 I
1---- I ----------- I-----------------I -------- I--------- I-------- I---------
(data-descr)

lline..no IdescrjlineI
--------------------------------
--------------------------------I

Crefrences)

Iref-type I
I -----------------------
I -----------------------
(ref-linea)

Iline-no IrefjlineI

I------------------------------------I
I-----------------------------------I

(aliases)
name Iuhere-used Icomment I

I--------------------I-----------I
I--------------------I-----------I

(min-.max)

Idatt-type Iminimn Imaximum
I ---------- I------------I ----------- I
I ---------- I------------I ----------- I

(range)

Idata-type lrange I
I ---------- I---------------I

I ---------- I---------------
(values)

Idata-type Ivalue

I ---------- I---------------
Ierrcode Ibad input I
Ierrcode Ibad output I
I ---------- I---------------I

(activiteec)
Inode-neae Iicom-type I
I ---------------------I----------I
manage numeric data II I
manage alpha data IiI
I ---------------------I----------

(children)
Idate-name I
I -- - - - - - - - - 1
I -------------------I

152



( sheets)
Ic.numberlnode (name (author [version Idate I
I---- --- -- I--------------I ------------------I -------- I--------

II [-0 IDM Example lGerald Rt. Morris 11.0 102/14/891
I --------------- I ------------------I --------1I--------

(boxes)
node Iname Ix ly Ivisible.DRE I

----I ---------------- I------------I
1*0 Imanage database 11 11 12
1I--- I---------------- I------------I

(segments)

Idata-id I

(location)
Ixs lye Ixe lye I

13 13 14 14 1
1--- I ---I ---I --- I

(symbols)
Ix ly Itype-symbol Isymboltype I

I--I--I-------I ------------I
14 14 farrow Iright,.arrou I

I -------I -------------
I --------
12 I

1I--- I ---lI--- I --- I

I -- -- -----I ------------I
17 17 larro, Idoun..arrou I

I -------- ------------I
I --------
13 I

19 19 110 110 I

-I---I---------I---I

110 110 farrow Iright..arrow I
I -- -- -----I ------------ I

(squiggle.)
lxi lyl 1x2 1y2 1x3 1y3 1x4 1y4

112 112 113 113 114 114 115 115 1

(met&asot es)
liabel Ix ly I

( no t e-.t ext)
Iline-no Iteztjline
I----------------------------------I

-----------------------------------I

15:3



(foot-.not es)
label inm lyi in lyn I

ill Ii ll 190 190 1

( not e-text )

I I---------------- I
11 Ian example decomposition 1
2 Inot completedI
I ---I ----- I-----------

(feos)
label Ix ly lpicture I

Sl--I------------------I
I- I--I-- ----------------

(labels)
Idata-id Inane Ix 17 1
I -------- I-------------I --- I ---I
11 luserdata 12 12 I
12 trules Is Is I
13 Ifeedback 18 18 1
I -------- I-------------I --- I --- I

Ic-nunber Inode Iname lauthor Iversion Idate I
I ---------I --- I----------------I -----------------I -------- I---------I
12 110 Imanage database lGerald R.. Morris 11.0 102/14/89 1
1 ---------I --- I----------------I -----------------I -------- I---------I
(boxes)

node Iname Ix ly Ivisible..DRE I
---- I --------------------I ---I1---I ----------- I

IAl Imanage numeric data 116 116 J -1
1A2 Imanage alpha data Ill 117 I-1
I---- I--------------------I---------------

(segments)
Idata..id I

(location)
ixs lye Ixe lye I

118 118 119 119 1

(symbols)
Ix ly Itype..eymbol Isymbol-type

I--I--I------- I---------------
118 118 lboundary Iii

I ------- I-------------
I-----
[4

119 119 121 121 1

-I-------------------

121 121 larrow Iright-arrow I
I ------- I---------------

I --------

19 119 123 123 1

-I---I----I----I----

119 119 Iturn Iright-down I
I ------- I---------------



23 123 124 124 I

-I------------------I

123 123 Iturn Idoun-right 1
124 124 farrow Iright-arrow I

I -I--------------I ---------------

12

126 126 127 127 1
1 --- I --- 1---l -

--- ------- I ---------------I
126 126 lboundary ICl
127 127 Itarn Iright-down I

--------I ---------------I

I --------I

127 127 129 129 1
1 --- I --- I---l --- I

--- ------- I ---------------I
129 129 farrow Idown-arrow I

--------I ---------------I
I --------I
17 I

127 127 132 132 I

-I----I------------I

132 132 (turn lright-dowii I
--------I ---------------

132 132 133 (33 1

-I-------I----I----I

133 133 farrow Idoun-arrow I
--------I ---------------I

I --------
13
1-----

135 135 136 (36 I

-I------------------I

(35 (35 (boundary (01 1
3S 135 (arrow (right-arrow I

------ --i-------------I

155



138 138 139 139 I

1- -I --- I - - I -

139 139 Iturn Iright-down I
I -- ---- --- - I -- - - - - -I

I --I----- - I
139 139 140 140 I

140 140 Iturn Idown-right I
I-I -I------------I ---------------
I-- I-I--- I --- 1
140 140 136 136 I

--------I---------------
--------I---------------

I --- I --- I-- -I

--- ------- I ---------------
143 143 Iturn Iright-up I

-1----- --I-------------I

143 143 136 136 I

-I-------------------

136 136 Iturn lup-right I
--------I ---------------

I --------I
110 I

140 140 141 141 I

--------I ---------------
140 140 larrom Idownt-arrow

--------I---------------

1----- I--- I--I--I

--- ------- I ---------------
175 175 Itunnel Ihidden-source1
176 176 Ito-from-nil ItA
176 176 larrow Iright-arrow I

--------I ---------------

177 177 178 178 I

-I-------------------

177 177 Ito-from-nil IA
78 178 larrow Iright-arrow I

--------I ---------------

179 179 I80 180 1

1 56



--- -- ---- -I.. ... . --. . ... ..- a
179 179 Ito-from-all 11
180 180 larro Iright-arrow I
I---I---I ------------- I ---- ----------- I

(squiggles)
Ixi lyl lx2 Iy2 1x3 ly3 Ix4 Iy4 I
,--- ,- - - - - - - . - - - . _ _

(met anotee)

Ilabel Ix ly I

(note-text)

Ilineno ltext-line I
I --I-------------- I
I --I--------------I

(foot-notes)

[label I lym Ixn lyn I
I -. . . I - I - I- - - -

(note.text)
Ilineno Itext.line I

S----------------
---------------------I

(feos)
Ilabel Ix ly Ipicture I

I-.....I-- ----------- I
-...I---I- ---------- I

(labels)

Idata-id Inane Ix ly I

I -------- I ------------- I---I---
It Iuserdata 117 117 I
14 lunumber 120 120 1
IS Iualpha 122 122 1
12 Irules 125 125 1
16 Inumberrules 128 128 1
17 Ialpharules 130 130 1
13 Ifeedback 134 134 1
18 Inumbermsgs 137 137 1
19 Ialphamsgs 141 141 1
110 Ifctrl/A13 155 155 1
Ill lerror code 185 185 1
I-------I------------I

157



Appendix I. SQL/N .Scripts

This appendix includes the SQL/NF scripts that create tie ested-relatizzl (Lital,;i lr

,,in a bulk load, and hulk erase of the database, show the contents ofthe neted-,l"ii qnal a I as.

ani extract, data from the database.

('rate Tables

The following SQL/NF script creates the schema for the nested-relational iplementat ion of

the IDEF 0 database.

SCHEME

TABLE DESCRIPT

ITEM lineono INTEGER 2
ITEM deuc-line CHARACTER 60

TABLE REF

ITEM ref.type CHARACTER 25
ITEM (TABLE ref-line.

ITEM line-no INTEGER 2

ITEM ref-line CHARACTER 60)
TABLE NOTETEXT

ITEM line-no INTEGER 2
ITEM text-line CHARACTER 60

SCHEMA
TABLE PROJECT

ITEM project.nane CHARACTER 12 UNIQUE
ITEM (TABLE activities

ITEM node.id INTEGER 4 UNIQUE NOT NULL
ITEM node CHARACTER 20

ITEM name CHARACTER 25

ITEM author CHARACTER 20

ITEM version CHARACTER 10
ITEM date CHARACTER 8

ITEM changes CHARACTER 60
ITEM c.number INTEGER 4 REFERENCES PROJECT-sheets.c-number

ITEM parent CHARACTER 2S REFERENCES PROJECT.activities.nme

ITEM (TABLE act.deacr DESCRIPT)
ITEM (TABLE refrences REF) / confusing name choice here! e/

ITEM (TABLE hiAstcalls

ITEM hiat.proj CHARACTER 12

ITEM hiat-node CHARACTER 20)

ITEM (TABLE data-eleoe
ITEM data-nae CHARACTER 25 REFERENCES PROJECT data-elemonts.name

ITEM icontype CHARACTER 1)

ITEM (TABLE children
ITEM node-name CHARACTER 25 REFERENCES PROJECT activities.name))

ITEM (TABLE dataoeleents
ITEM data-id INTEGER 4 UNIQUE NOT NULL

ITEM name CHARACTER 25

ITEM author CHARACTER 20

ITEM version CHARACTER 10

158.



ITEM date CHARACTER 8

ITEM changes CHARACTER 60
ITEM parent CHARACTER 25 REFERENCES PROJECT.dataelements.naeie
ITEM (TABLE data-descr DESCRIPT)
ITEM (TABLE refrences REF)
ITEM (TABLE aliases

ITEM name CHARACTER 25

ITEM where-used CHARACTER 25
ITEM comment CHARACTER 25)

ITEM (TABLE min-max
ITEM data-type CHARACTER 25

ITEM minimum CHARACTER 1
ITEM maximum CHARACTER 15)

ITEM (TABLE range

ITEM data-type CHARACTER 25

ITEM range CHARACTER 60)
ITEM (TABLE values

ITEM data-type CHARACTER 25
ITEM value CHARACTER 15)

ITEM (TABLE activitees

ITEM nodename CHARACTER 2S REFERENCES PROJECT.activities.name

ITEM icon-type CHARACTER 1)
ITEM (TABLE children

ITEM data-name CHARACTER 25 REFERENCES PROJECT.data-elements.name)

ITEM (TABLE sheets
ITEM c.number INTEGER 4 UNIQUE NOT NULL
ITEM node CHARACTER 20 REFERENCES PROJECT.activities.node
ITEM name CHARACTER 25 REFERENCES PROJECT.activities.name
ITEM author CHARACTER 20 REFERENCES PROJECT.activities.author
ITEM version CHARACTER 10 REFERENCES PROJECT.activities.version
ITEM date CHARACTER 8 REFERENCES PROJECT~activities.date

ITEM (TABLE boxes

ITEM node CHARACTER 20 REFERENCES PROJECT.activities.node

ITEM name CHARACTER 25 REFERENCES PROJECT.activities.name
ITEM x INTEGER 2

ITEM y INTEGER 2
ITEM visible-dre INTEGER 2)

ITEM (TABLE segments
ITEM data-id INTEGER 4 REFERENCES PROJECT.data-elements.data-id
ITEM (TABLE location

ITEM xs INTEGER 2
ITEM ys INTEGER 2
ITEM xe INTEGER 2

ITEM ye INTEGER 2)
ITEM (TABLE symbols

ITEM x INTEGER 2

ITEM y INTEGER 2

ITEM typesymbol INTEGER 2
ITEM symbol.type INTEGER 2))

ITEM (TABLE squiggles
ITEM xl INTEGER 2
ITEM yl INTEGER 2
ITEM x2 INTEGER 2

ITEM y2 INTEGER 2

ITEM x3 INTEGER 2

ITEM y3 INTEGER 2

ITEM x4 INTEGER 2
ITEM y4 INTEGER 2)

ITEM (TABLE meta&notes
ITEM label CHARACTER 1
ITEM x INTEGER 2
ITEM y INTEGER 2

ITEM (TABLE note.text NOTETEIT))
ITEM (TABLE foot-notes

ITEM label CHARACTER 1

159



ITEM i INTEGER 2
ITEM yin INTEGER 2

ITEM xnt INTEGER 2

ITEM yn INTEGER 2
ITEM (TABLE note-text NOTETEXT))

ITEM (TABLE foos
ITEM label CHARACTER I
ITEM x INTEGER 2

ITEM y INTEGER 2
ITEM picture CHARACTER 60)

ITEM (TABLE labels
ITEM data..id INTEGER 4 REFERENCES PROJECT.data..elements.data-id
ITEM name CHARACTER 10

ITEM x INTEGER 2
ITEMI y INTEGER 2)

Load Database

The following SQL/NF script does a bulk load rf the data in the exaniple lataka,,. Hit'

the nested- relational implementation of the IDEFo database. Note that Roth's SQL/NE l1aii

manipulation language does not actually contain the DML command which allow., a bulk 10oad

-x utax shown below is based on the syntax associated with the Ingres SQL. Note that aico

s ign (7%) is used to delimit nested relations (as denoted by the =cO% format), and a Commna J

carriage return are used to delimit atomic values (as denoted by the =cO format).

COPY TABLE project

projoct..nauacO,
actiitim(nodidcO,nodecOnaae-cO,author-cO,

version-cO,date-cO ,changes-cO,c..nuaber-cO~parent-cO,

act-deucr(ln..nouc0,desc..line-cO)-cO%,
refrences(ref-typescO~ref-lines(linenocO,reflinecO)cO)c7.,
hist..calle (hiat-.projucO .hist-node-cO)-cO%,
data-elens(data.naae-cO ,icoa..type-cO) .cO%,
ch ildren(node-naisencO) c0%

dataeslaent. (data~id-cO naae-cO ,author-cO,
version-c0,date-cO,changes-cO,parent-cO,
data..descr(line-no-cO ,deuc-line-cO)acO%,
refrences(ref-.typeucO,ref..lines(line-no-cO ,ref..lin,=cO).cO%)-cO.
aliaee(nmaeuc.vhere-u.seducO,coinent-cO).cO%,
min..maz(data.type-CO.iniuua-cO,maxiuumacO)-cO%,
range(data..typeucO .range-cO).cO%.
values(data..type-cO ,value-cO).co%,
children (data-naue-c0)3c02

sheets(c..nubersc0,nodecO.nanc,authorcO~versioncO ,date-c0,
boxea(nodeuc0.name-cO.x-cO.y-c0,viibld(recO)=c0%,
seguents(data..id-c0,location(xs-cO,ys-cO,xe-cO,ye-cO)-c7%,

syubols(zuc0.yuc0,syubol-type-cO,type-syubol-cO).cO%)acO%,
squiggles(ziicO,ylucO,x2=cO~y2.cO,z3scO,y3.cO,x4.cO ,y4.cO)sc07,

160



meta-iotes(labelucO,x-cO,Y-cO,note-text(line..no-cO,text-ine~cO)co%)=c/.

foot-notes(label-cO~rmuc0, yucO,xn-cO yn-cO.
note-telt (line no-cO~text..line-cO)c7)=cO..

feos(label-cO zscO ,y-cO ,picturecO)-cO%,

labels (data. d-cO~nam..cO. i-cO y-cO)-cO%,

from nested-example.dat;

Erase Database

The following SQL/NF script eliminates all the data in the nested-relat ioiial imtplenietiit t iu

of the IDEFO database.

DELETE FROM project;

Show Database

The following SQL/,NF script shows all the data in the nested-relat ioiial iInIplomniarlt ii I*

the IDEF0 database.

SELECT ALL. FROM project;

Ertrart Drawang Data

The following query extracts drawing data from the nested-relational Imiplemnentation of Ii-

I DF 0F, database. The query is associated with the diagram shown in Figure 8.

161



SELECT (SELECT ILL BUT segments. data- d, labels -data.id FROM sheets WHERE node = AOI)
FROM project
WHERE project-name - DON Example";

(sheets)
Ic..number Inode Inane lauthor Iversion Idate I
I ---------I --- I----------------I -----------------I -------- I---------
2 IAO Imanage database lGerald R. Morris 11.0 102/14/89 1

------I --- I ----------------I -----------------I -------- I---------I
(boxes)

node Inane lx ly Ivisible.DRE I
I---- I--------------------I --- I---I ------------
Al manage numeric data 116 116 1 -11
IA2 Imanage alpha data 117 117 1 -11
I---- I---------------------I--------------

(segments)
(location)

Ira lye ISO lye I

118 118 119 119 I

(symbols)
ix 17 Itype..symbol Isymbol..type I

1-l--I------- I--------------
18 118 Iboundary III

I ------- I---------------I

119 119 121 121 1

-I------------------I

121 121 larrow Iright-arrow I
I ------- I---------------

119 119 123 123 1

-I------------------I

19 119 Iturn Iright-down I

-I----I----------I

123 123 124 124 1

-I----I------------I

123 123 Iturn Idown-right 1
24 124 larrow Iright-arrow I

-I----I------------I

126 126 127 127 1

I--I--I------- I---------------I
126 126 lboundary ICI
I27 127 Iturn Iright-down

I ------- I---------------

27 127 129 129 1

-I------------------I

129 129 larrow Idown-arrow I
------- I---------------I

127 127 132 132 1

I--I--I------- I---------------I
132 132 [turn Iright-down I

I ------- I---------------I

162



(32 132 133 133 1

--- I--II- -I -

(33 133 (arrow (down-arrow I
------ ---------------

135 (35 136 (36 1
1 --I---1-- I---I

-I- -- I----- ---------------
(35 (35 (boundary (01
(35 (35 (arrow (right-arrow I

--------I ---------------

(38 (38 (39 (39 1

-(-------------------

(39 (39 (turn (right-down I
--------I ---------------

139 (39 (40 (40 1

--- ------- I ---------------I
140 (40 (turn (down-right I

-(----- --I-------------I

(40 (40 (36 (36 1

--------I---------------
------ --I-------------I

(42 (42 (43 (43 1

-(-------------------

(43 (43 (turn (right-up I

-(_ ----- --I-------------I

(43 (43 (36 (36 1

-(-------------------

136 (36 (turn (up-right I
-(----- --I-------------I

(40 (40 (41 (41 1

(40 (40 (arrow (down-arrow

--------I -------------

(75 175 (76 (76 1

(75 (75 ( tuntnel (hiddon-souxco
(76 (76 (to-from-ali ItA
(76 (76 larrow (right-arrow I

--------I ---------------

177 (77 (78 (78 I

-(_ --I----- --I-------------
(77 (77 (to-from-all (A
(78 (78 (arrow (right-arrow I

--------I ---------------

163



79 179 180 180 I
--- I ---I1---I --- I

--- I---I I
179 179 Ito-from-all IA 1
180 180 [arrow [right-arrow I
---I---I I -------------- I

(squiggles)

Ix1 lyl Ix2 Iy2 Ix3 Iy3 Ix4 ly4 I

(meta-notes)

Ilabel Ix ly I

(note-text)

Ilineno Itext-line I

I --I-------------- I
I I--------------- I

(foot-notes)
Ilabel I. lyn Irn lyn I

(note-text)

Iline-no Itext.line I

I ---------------- I

I --I-------------- I
(feos)

[label Ix ly 1picture I

I- .I---I----------- I

I- .I---I----------- I
(labels)

Iname Ix ly I
I ------------ ---
luserdata 117 1 1I
lunumber 120 120 1

lualpha 122 122 I
Irules 125 125 I

Inumberrules 128 128 1

Ialpharules 130 130 1
Ifeedback 134 134 I

I numbermgs 137 137 1
lalphsasgs 141 141 1
Ifctrl/&13 155 155 1

lerror code 185 185 1

I ------------

[E.,'tract Essential Data

The following queries extract essential data from the ziested-relatiotnal iuiimi ,,Iiiin it, -1 I hi

IDEF 0 database. The first query extracts the data for a typical activity data ,ictiorravr I h,

.econd query extracts the data for a typical data element data dictionary. A. before, th o,', ,lir-,i

are associated with the diagram shown in Figure 8.

164



.4ctizity Data Dictionary. This next SQL/NF query illustrates the extraction of the hta

dictionary data (essential data) associated with a typical activity (Al in the example).

SELECT (SELECT ALL BUT node_id,c -number,hist -calls,children FROM activities WHERE node = "Al")

FROM project
WHERE project-name - "DM Example";

(activities)
rnode Iname lauthor Iversion Idate Ichanges Iparent
I I ------------------- I ---------------- I--------I---------I-----------I---------------I
IA1 Imanage numeric data IGerald R. Morris 11.0 112/14/89 1 Imanage database I

I - I ------------------- I ---------------- I -------- I --------- I----------- I --------------- I
(act-descr)

Iline-no Idescr.line I
I I -------------------------------- I
I1 IThis activity will 1
12 Ihandle numbers I
I -------- I ------------------------------ I
(refrences)

Iref-type I
I ---------------------- I
Icontract I
I -----------------------
(ref.lines)

Iline-no Iref-line I
I -------- I ------------------------------- I
I IKIR 100028-89-0123 3.3.2.1.2a I
I -------- I------------------------------

(data-eleua)
Idata.naae licon.type I
I -----------------I ---------- I
Iunumber II I
lerrors II I
Inumberrules IC I
Inumbermsgs 10 1
I ---------------- I----------I

165



Data Element Data Dzctzonary Th Is next SQL/NV (Iuiery ill ustrates th ei,,xti-acrion 4ft he l~i

dlictionary data (essential data) associated with a typical dtiaa element (ninmlo'hr In the 'xni'

SELECT (SELECT ALL BUT datajid FROM data-elements WHERE name = "unumber")
PROM project

WHERE project-nsae = "ON Example";

(data-elements)

name lauthor Iversion Idate Ichanges 1parent I
I ----------- I-----------------I -------- I--------- I-------- I--------- I
lunumber lGerald R. Morris 11.0 102/14/89 1 luserdata I
I ----------- I-----------------I -------- I--------- I-------- I---------I
(dat a.descr)

Ilinejxo IdescrjlineI
I -------- I ------------------------------- I
(I IThis is the user numeric data I

I -------- I ------------------------------- I
(refrences)

I ref-.typeI
I ----------------------- I
1IAFM

I -----------------------
(ref-.lines)

Itine-no Iref-lineI

----- I -------------------------------I
II IAFM1 35-10 page 3 para. 2.3
1--------I -------------------------------I

(aliases)
Inane Iuhere..used Icomment I

I- ---------------- I ------------I
----------------I ----------- I

(min-max)
Idata-type Iminimum Imazimuji I
---------- I------------I ------------
---------- I------------I ------------

(range)

Idata..type IrangeI
I ---------- I---------------I
integer Iinteger'range I

I ---------- I---------------
(values)

Idsta-type Ivalue

I -----------I ---------------

I -----------I ---------------
(act ivitees)

Inode-naaa Iicoa..type I
I---------------------- I----------- I
manage numeric data II I
I---------------------- I----------- I

(children)

Idata-nam

I - - - - - - - - -
I-------------------I



Appendix J. Ada Package for Dractng Data Structurs

The following (incomplete) package specification illustrates the data trictiiros that might ho

ui','l to capture the drawing data in the IDEFo database. Obviously some type of embeddel ,utuv

i;11'izage capability would be required.

with activity-data, dataelementdata, analyst_data;
package drawing-data is

-- This package defines the data structures that are used to capture the
-- drawing data from the IDEFO database via embedded query language calls

-- It is not known apriori how many tuples there are, so a linked list
structure is used.

-- The element names correspond identically to the attribute names used in
-- the IDEFO database. It is assumed the user of this package is familiar
-- with the database schema...

type box;
type box-pointer is access box;
type box is record

node activity-data.node-type;
name activity-data.name-type;
x integer;
y integer;

visible-dre integer;

next-box box-pointer : null; -- next box in list

end record;

type loc;
type loc-pointer is access loc;
type loc is record

xs integer;
ys integer;
xe integer;
ye integer;

next.loc :locpointer :- null; -- next location
end record;

type symbol;
type symbol-pointer is access symbol;
type symbol is record

x integer;
y integer;

type-symbol string(l..12);

symbol-type string(l..12);
next-symbol symbol.pointer :- null; -- next symbol

end record;

167



type seg;
type seg-pointer is access seg;

type seg is record

location loc-pointer :- null;

symbols symbol-pointer :- null;
next-seg seg-pointer :- null; -- next segment

end record;

type squig;

type squig.pointer is access squig;

type squig is record

xl integer;

yl integer;

x2 integer;

y2 : integer;

x3 integer;

y3 integer;

x4 integer;
y4 integer;
next-squig squig-pointer := null; -- next squiggle

end record;

type note-txt;
type note-txt-pointer is access note-txt;
type note-txt is record

line-no integer;
text.line string(l..60);

next-note-txt note-txtpointer : null; -- next line of text

end record;

type meta;

type meta-pointer is access meta;

type meta is record

label string(1..1);

x integer;
y integer;

note-text note_txt-pointer :- null;
next-meta meta-pointer :- null; -- next meta-note

end record;

type foot;

type foot-pointer is access foot;

type foot is record

label string(l..1);

xm integer;

ym integer;

in integer;
yn integer;

note-text note txt-pointer :- null;

next-foot foot-pointer :- null; -- next foot-note

end record;

mm6 S



type feo;
type feo-pointer is access feo;
type feo is record

label string(l..l);
x integer;
y integer;
picture string(1..60);
next-feo feo-pointer :- null; -- next FEO

end record;

type label;
type label-pointer is access label;
type label is record

name string(l..10);
x :integer;
y integer;
next-label label-pointer :- null; -- next label

end record;

type sheet;
type sheet-pointer is access sheet;
type sheet is record

c-number integer;
node activity-data.node-type;
name activity-data.name-type;
author analyst-data.author-type;
version activity-data.version-type;
date activity-data.date-type;
boxes box-pointer :- null;
segments seg.pointer :- null;
squiggles squig-pointer : null;
meta-notes: metapointer :- null;
foot-notes: foot-pointer :- null;
feos feo-pointer :- null;
labels label-pointer :- null;

end record;

procedure draw-a_0sheet(the-sheet : in sheet-pointer);

-- and some other stuff as well

end drawing_data;

169



Bibliogiaphy

1. Austin, Capt Kenneth A. SAtool Interface to the SD[ Architecture Datufloi, .11odling T7rcch-
nique. MS thesis, Air Force Institute of Technology, December 1989.

2. Bancilhon, Francois. "Object-Oriented Database Systems." AC.1.,C'.-.U_ I)
SIGART PODS, pages 152-162 (1988).

3. Carey, Michael, et al. "An Overview of the Exrel Relational DBMS." ('",mpter S,'iv,,.
Department, University of Wisconsin. 1989.

1. Carey, Michael, et al. "The EXODUS Extensible DBMS Project: An Ov,,rvi-w." (' r
Sciences Department, University of Wisconsin, 1989.

5. Carey, Michael, et al. "Using the EXODUS Storage Manager V1.2." Computer Scien,.',, Do-
partment, University of Wisconsin, 1989.

6, Chen, P. Pin-Shan. "'The Entity-Relationship Model-Toward a Unified Viw ot" Data," .('/
Transactions on Database Systems, 1(1):9-36 (1976).

7. C'odd, E. F. "A Relational Model of Data for Large Shared Data Banks." ('o,, haftons ,
the ACM, 13((3):377-387 (1970).

' Colby, Latha S..4 Recursive .Algebra for Vested Relations. Technical Report. 1l1l,1iaul, I
sity. January 1989.

9. Connally, Capt Ted D. Common Database Interface for Heteroyen(ii, ."ojl/ait /n,,,i mn,'
Tools. MS thesis, Air Force Institute of Technology, December 19,S7 (A) D-.\ Is!)12-)

10. Date, C. J. An Introduction to Database Systems. Addison-Wesley Pul-lishing Corliin.
1981.

11. DeMarco, Tom. Structured Analysis and System Specification. Prentice Hall. 1979.

12. Fairley, Richard E. Software Engineering Concepts. McGraw-Hill Book Company. 19s.

13. Forman, Betty Y. "SuperPDL Puts Software Systems Design On-Line," Dittal Reru'w. pa;1; s
53-55 (August 24 1987).

1I. Goering, Richard. "Partnership Links CASE to Software Test," Computer DOstgn. page 3S
(May 1 1988).

15 Goering, Richard. "Standardization Effort Targets Data Management for '.\SE~." (',p,,

Design. page 28 (October 1 1988).

16 Hartrum, Thomas C. System Development Documentation Guidelines a, ,t 't tl trid, i liit.it
-i Edition). Department of Electrical and Computer Engineering. Air Force lnstitutre u
nology, January 2 1989.

17 Hawley, Sue Ann. "CASE For Sale," DEC Professional, pages 52-54 (De".',,I.r 1'>)N7

I .1. Jensen, Randall, et al. "ESML: An Extended Systems Modeling Laiigiag, Ba.,l ot th,' I1.:l.
Flow Diagram." Preliminary information distributed by Dr. Jenen in .P['I IlT.. R ,'l I m.
Analysis. Hughes Aircraft Company, Ground Systems Group, Fullerton. Calir ma . No,',iil,.
2 1987.

P) Johnson. Capt Steven E. .4 Graphics Editor for Structured 4azltii, i ill tt D,i~i 0i, it'-,,
MS thesis, Air Force Institute of Technology. December 1987 (A D .A l.wi , i

20 Korth. Henry F. and Abraham Silbershatz. Database Systenis ('C uf p New Yik. NY 1It2',
McGraw-Hill Book Company, 1986.

21. Lamont. Gary B. "An Introduction to Big-O and His Friends." ('lass landow rot FEN(; 5-i.
Advanced Information Structures, Fall Quarter 19A8

170



22. Makinouchi. A. "'A Consideration of Normal Form of Not-.Necessaill-Northiilzed Ir
in the Relational Data Model," Proc. .3rd VLDB, pages 447-453 (1977).

'23. Mankus, Capt Michael A. Design and [implementation of It V(61ed IRebttlonal Data ."'Ilf
Under the Exodus Extensible Database System. MS thesis, Air Force Instituto of Teciiiol *g.
December 1989.

'2-1. Marca, David A. and Clement L. McGowan. SADT Structured Analysis and Dn(Sign T-ft/)iqu,(
McGraw-Hill Book Company. 1988.

25. Materials Laboratory, Air Force %%right Aeronautical Laboratories, Air F'orce Svsttfm, on
mand, Wright- Patterson AFB, OH 45433. Integrated Computer-Aided .1!anufacturmyf (1(1.11,)
Function Modeling Manual (IDEF0 ), June 1981.

261. Ozsoyoglu, Meral Z. and Li-Yan Yuan. -A New Normal Form for Nestod llolatlis, 11
Transactions on Database Systems, 12(4):111-136 (March 1987).

27. Pressman, Roger S. Soft ware Engineering: A Practitioner's .Approach. .N e York, NY Iu-120.
McGraw-Hill Book Company. 1987.

2,8. Relational Technology (now Ingres Corporation), Inc., Alameda, California 94501. 1.%"-
GRES/Enbedded SQL User's Guide and Reference .1Ianual, 1986.

29. Relational Technology (now Ingres Corporation). Inc.. Alamnedi, California 941501. I.\*-
GRES/SQL REFERENVCE V.VUA4L, 1986.

30. Ross, Douglas T. "Structured Analysis (SA): A language for Communicating Ideas," JEEF-
Transactions on Software Engineering, SE-.3( 1): 16-34 (January 1976).

:5 1. Roth, Capt Mark A. Theory of Non-First Normal Form Relational Databa.c%. PIlID dlLcta-
tion, University of Texas at Austin. May 1986.

32. Roth, Mark , e t al. "Extended Algebra and Calculus for Nested Relationial Database,. A.411
Transactions on Database Systems, 13(4):389-417 (December 1988).

33. Roth, Mark A., et al. -SQL/NF: A Query Language for -INF Relational Databases.~ Infoi-
rnation Systems. 12(1):99-114 (1987).

3-1. Rubenstein, WV. Bradley. "A Database Design for Musical Informiation." -A!I SIGU1OD).
16(3):479-490 (1987).

315. Smith, Capt Nealon F. Implementation of S.4tool II in A4da. MIS thesis. Air Forct- hintituto of'
Technology. December 1989.

36 Stonebraker, Michael. Readings in Database Systems. San Mlateo, CA: \lorgan lKaiihinn.
1988.

37 Technology, Index. "Index Technology Announces Excelerator CASE Link to Digit al' Novk
VAX CCD/Plus," CASEnews, page 4 (July/August 1988).

3.' Thomas, S.J. and P.C. Fischer. -Nested Relational Structures." In by P. lhannellakis. Elirel.
,ditor. A4dvances in Computing Research III, The Theory of Databases, JAI Press. 19S6.

3T) \'izard. Michael. Interface Brings CASE Tool Links C'lose to Reality," Digital Rfrit av.
101 (March 21 1988).

1 (). Ward. Paul. "The Transformation Schema: An Extension of the Data Flow Diagram fin
Represent Control and Timing." IEEE Transactions on Sofftware Enqmginrcmq, ;E- I-'(*. I-'
210 (February 1986).

11 Yourdon. Edward and Larry Constantine Structurfed Designi Ne~w York, \) 10020) VNilto

Press. 1978.

171



Vita

Captain Gerald R. Morris He graduated

From high school in Norwalk, California, in 1972 and enlisted in the United States Air Force in May,

1973. He served 7 years as an electronic technician for a variety of communications equipment.

lie was then accepted under the Airman Education and Commissioning Program and attended

The Ohio State University, from which he received the degree of Bachelor of Science in Electri-

cal Engineering (summa cum laude) in December, 1982. Upon graduation he received a regular

commission in the USAF through the USAF Officer Training School where he was a distitnguishcd

graduate. He then served as an electrical engineer at the Defense Contract Administration Services

Plant Representative Office, Hughes Aircraft Company, Fullerton, California. In 1986 he received

the National Contract Managerment Association's 1st Place Blanche Witte Award for specifying,

designing, and building a database management system to track government contracts. He entered

the School of Engineering, Air Force Institute of Technology, in May, 1988.

172



SEC.R17v C -ASS,.. A:ON 0 7-'S PAGE

J Form' 
roved

REPORT DOCUMENTATION PAGE OMB No- 07 -O e8

la REPO z " 
SECJRITY CLASSiCATION lb RESTRICTIVE MARKINGS

UNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release;
2b. Z,-CL,-SSIFICATION , DOWNGRADING SCHEL,.LE distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

A-'T/GCE/ENG/9 0M-2

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATIONI (it aplicable)
School of Engineering E aFi.

tc -:)DRESS (City, State, ano ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

Air Force Institute of Technology (AU)

!,.righ-Patterson AFB, OH 45433-6583

Ba. NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Strategic Defenlie (If applicable)

niztative Orzanizat:on SD.O/_.._
8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF ;UNDING NUMBERS

PROGRAM PROJECT TASK IWORK UNIT
.Oon 1E149, The Pentagon ELEMENT NO NO. NO IACCESSION NO

Washin ton, D.C. 20301-7100 I
I TITLE (Include Security Classification)

A Comparison of a Relational and Nested-Relational IDEFO Data Model

S.2. PERSONAL AUTHOR(S)

Gerald R. Morris, Captain. USAF
13a. TYPE OF REPORT i,3b. TIME COVERED 114. DATE OF REPORT (Year, Month. Day) 15. PAGE COUNT

MS thesis JFROM TO 1990 March I-
16. SUPOLEMENTARY NOTATION

,7 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP software engineering, database management systems

05 02 databases, computer aided design,

12 1 05 computer aided manufacturin

19 ABSTRACT (Cortinue on reverse if necessary and idertify by block number)

.z-es:s advisor: Mark A. Roth, Major, USAF

Assistant Professor of Electrical and Computer Engineering

20 DS-RBI,7ON AVAILABILITY O ABS'RACT 21 ABSTRACT SECJRITY CLASSIFICATION

n 'JNCLASSIF;ED"JNLIMI-.cD 0 SAME AS RP' ] :)TIC LSERS UNCLASS.-:ED
22a *A:. RESPOtBL: NDIID AL |22b TLEP'ONE (Ir.iude Area Cwce) .2c O:'C - SYVBOL

Mark A. .cth, Major, USAF (5:3)255-37-6 AFT/ENG

DO Form 1473, JUN B6 Previous editions are obsolete SECURI7 CL.-,SSrICAT'ON OF TWiS PAGE

UNCLASS: F: ED



(block 19 continued)

Abstract:

This thesis develops an abstract data model of a particular computer
aided software engineering (CASE) methodology, and compares the query
complexity, database size, and speed of query execution of a relational
database management system (DBMS) implementation of the methodology
with a nested-relational DBMS implementation of the same CASE methodology.
In particular, the thesis considers the United States Air Force Integrated
Computer Aided Manufacturing (ICAM) program's subset of Ross's Structured
Analysis (SA) language called ICAM Definition Method Zero (IDEFO).
Ingres Corporation's relational DBMS, Ingres, is the implementation
media for the relational version. The University of Wisconsin's extensible
database, Exodus, is the implementation media for the. nested-relational
version.

The thesis provides background information on the development of
CASE methodologies and the development of database management systems.
Additionally, it provides an overview of the IDEFO analysis language,
and the Exodus extensible DBMS.

Inc.uded in the thesis is an abstract data model of the IDEFo language.
The model partitions IDEFO into an essential data model and a drawing
data model. This partitioned representation facilitates ongoing and
future research relative to syntax checking, generation of an executable
software specification, and automatic layout of SA diagrams. Since

IDEFO is the analysis methodology selected by the Strategic Defense
Initiative Organization, the abstract data model alone is of importance.

The abstract data model is mapped into a relational representation
and implemented within Ingres. The relational representation is mapped
into a nested-relational representation and implemented within Exodus.
The two implementations are compared to see if there are any advantages
to be gained by using a nested-relational DBMS for this type of application
(CASE tool data). The areas of comparison include query complexity,
size the database, and speed of query execution.


